广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 1-8.doi: 10.12052/gdutxb.200023
• • 下一篇
朱鉴, 刘培钰, 陈炳丰, 蔡瑞初
Zhu Jian, Liu Pei-yu, Chen Bing-feng, Cai Rui-chu
摘要: 提出一种基于低秩矩阵补全的单幅图像去雨算法, 该算法采用检测、修补、优化的三阶段策略。在检测雨阶段, 利用雨的亮度先验信息构建检测雨模型; 在修补阶段, 先采用相似块匹配算法构造相似块矩阵, 再利用其具有低秩属性的特点, 将去雨问题转化为低秩矩阵补全问题; 在优化阶段, 提出修正策略进一步提升去雨效果和客观度量值。在合成雨图和真实雨图上验证算法, 实验结果表明, 该算法表现出较好的去雨效果, 且对大雨图像的处理也较为满意, 相比其他方法在客观度量值和主观视觉上均有一定的优势。
中图分类号:
[1] KIM J H, SIM J Y, KIM C S. Video deraining and desnowing using temporal correlation and low-rank matrix completion [J]. IEEE Transactions on Image Processing, 2015, 24(9): 2658-2670 [2] JIANG T X, HUANG T Z, ZHAO X L, et al. A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 4057-4066. [3] LI M, XIE Q, ZHAO Q, et al. Video rain streak removal by multiscale convolutional sparse coding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6644-6653. [4] CHEN J, TAN C H, HOU J, et al. Robust video content alignment and compensation for rain removal in a cnn framework[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6286-6295. [5] XU J, ZHAO W, LIU P, et al. Removing rain and snow in a single image using guided filter[C]// Proceedings of the IEEE International Conference on Computer Science and Automation Engineering (CSAE). Zhangjiajie: IEEE, 2012, 2: 304-307. [6] ZHENG X, LIAO Y, GUO W, et al. Single-image-based rain and snow removal using multi-guided filter[C]//Proceedings of the International Conference on Neural Information Processing. Berlin: Springer, 2013: 258-265. [7] KANG L W, LIN C W, FU Y H. Automatic single-image-based rain streaks removal via image decomposition [J]. IEEE Transactions on Image Processing, 2011, 21(4): 1742-1755 [8] LI Y, TAN R T, GUO X, et al. Rain streak removal using layer priors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2736-2744. [9] LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 3397-3405. [10] ZHU L, FU C W, LISCHINSKI D, et al. Joint bi-layer optimization for single-image rain streak removal[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2526-2534. [11] LIU R, JIANG Z, FAN X, et al. Knowledge-driven deep unrolling for robust image layer separation [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1653-1666 [12] FU X, HUANG J, DING X, et al. Clearing the skies: A deep network architecture for single-image rain removal [J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944-2956 [13] FU X, HUANG J, ZENG D, et al. Removing rain from single images via a deep detail network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3855-3863. [14] XIANG P, WANG L, WU F, et al. Single-image de-raining with feature-supervised generative adversarial network [J]. IEEE Signal Processing Letters, 2019, 26(5): 650-654 [15] YANG W, TAN R T, FENG J, et al. Joint rain detection and removal from a single image with contextualized deep networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019 [16] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 695-704. [17] 傅雪阳, 孙琦, 黄悦, 等. 基于深度邻近连接网络的单幅图像去雨方法[J]. 计算机科学, 2020, 47(2): 106-111 FU X Y, SUN Q, HUANG Y, et al. Method for single image de-raining based on deep adjacently connected networks [J]. Computer Science, 2020, 47(2): 106-111 [18] 史加荣, 郑秀云, 魏宗田等. 低秩矩阵恢复算法综述[J]. 计算机应用研究, 2013, 30(6): 1601-1605 SHI J R, ZHENG X Y, WEI Z T, et al. Survey on algorithms of low-rank matrix recovery [J]. Application Research of Computers, 2013, 30(6): 1601-1605 [19] LU C, LIN Z, YAN S. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization [J]. IEEE Transactions on Image Processing, 2014, 24(2): 646-654 [20] MA S, GOLDFARB D, CHEN L. Fixed point and Bregman iterative methods for matrix rank minimization [J]. Mathematical Programming, 2011, 128(1-2): 321-353 [21] LU C, TANG J, YAN S, et al. Generalized nonconvex nonsmooth low-rank minimization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 4130-4137. [22] DONG W, SHI G, LI X. Nonlocal image restoration with bilateral variance estimation: a low-rank approach [J]. IEEE Transactions on Image Processing, 2012, 22(2): 700-711 [23] JI H, LIU C, SHEN Z, et al. Robust video denoising using low rank matrix completion[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 1791-1798. [24] WEN F, CHU L, LIU P, et al. A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning [J]. IEEE Access, 2018, 6: 69883-69906 [25] WANG Y, HUANG T Z. A tensor-based low-rank model for single-image rain streaks Removal [J]. IEEE Access, 2019, 7: 83437-83448 [26] ABDEL-HAKIM A E. A novel approach for rain removal from videos using low-rank recovery[C]//20145th International Conference on Intelligent Systems, Modelling and Simulation. Langkawi: IEEE, 2014: 351-356. [27] ZHANG H, PATEL V M. Convolutional sparse and low-rank coding-based rain streak removal[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa: IEEE, 2017: 1259-1267. [28] CANDES E J, PLAN Y. Matrix completion with noise [J]. Proceedings of the IEEE, 2010, 98(6): 925-936 [29] HORE A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//201020th International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 2366-2369. [30] 李红蕾, 凌捷, 徐少强. 关于图象质量评价指标PSNR的注记[J]. 广东工业大学学报, 2004, 21(3): 74-78 LI H L, LING J, XU S Q. The exegesis of the quality assessment PSNR of images [J]. Journal of Guangdong University of Technology, 2004, 21(3): 74-78 [31] YANG W, TAN R T, FENG J, et al. Deep joint rain detection and removal from a single image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 1357-1366. |
[1] | 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21. |
[2] | 陈靖宇, 吕毅. 基于脉冲神经网络的冷链制冷机结霜检测方法[J]. 广东工业大学学报, 2023, 40(01): 29-38. |
[3] | 叶文权, 李斯, 凌捷. 基于多级残差U-Net的稀疏SPECT图像重建[J]. 广东工业大学学报, 2023, 40(01): 61-67. |
[4] | 邹恒, 高军礼, 张树文, 宋海涛. 围棋机器人落子指引装置的设计与实现[J]. 广东工业大学学报, 2023, 40(01): 77-82,91. |
[5] | 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43. |
[6] | 刘信宏, 苏成悦, 陈静, 徐胜, 罗文骏, 李艺洪, 刘拔. 高分辨率桥梁裂缝图像实时检测[J]. 广东工业大学学报, 2022, 39(06): 73-79. |
[7] | 熊武, 刘义. 粒子滤波算法在BDS高铁铁轨静态形变监测中的应用研究[J]. 广东工业大学学报, 2022, 39(04): 66-72. |
[8] | 易闽琦, 刘洪伟, 高鸿铭. 电商平台产品共同购买网络的影响因素研究[J]. 广东工业大学学报, 2022, 39(03): 16-24. |
[9] | 丘展春, 费伦科, 滕少华, 张巍. 余弦相似度保持的掌纹识别算法[J]. 广东工业大学学报, 2022, 39(03): 55-62. |
[10] | 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61. |
[11] | Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8. |
[12] | 李光程, 赵庆林, 谢侃. 去中心化的数据处理方案设计[J]. 广东工业大学学报, 2021, 38(06): 77-83. |
[13] | 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9. |
[14] | 张巍, 张圳彬. 联合图嵌入与特征加权的无监督特征选择[J]. 广东工业大学学报, 2021, 38(05): 16-23. |
[15] | 邓杰航, 袁仲鸣, 林好润, 顾国生. 协同超像素和视觉显著性的图像质量评价[J]. 广东工业大学学报, 2021, 38(05): 33-39. |
|