广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (04): 95-102.doi: 10.12052/gdutxb.200081
卢健彬1,2, 陈颖1, 林子渊2, 陈佰满2
Lu Jian-bin1,2, Chen Yin1, Lin Zi-yuan2, Chen Bai-man2
摘要: 在双级行波热声发动机的谐振管中加入变径管, 并利用deltaEC(Design Environment for Low-amplitude ThermoAcoustic Energy Conversion)对其进行数值模拟分析, 探究变径管在2个热声热机单元中无负载及外接负载时, 对换热器间温差和回热器声功输出性能的影响。通过调节变径管的内直径、长度和位置, 分析其对双级行波热声发动机的影响。模拟结果表明, 在恒功率的情况下, 变径管通过在不同的位置和内直径下有效调节相位、压力幅值、体积流率等, 从而影响热声发动机的系统稳定温差和输出性能, 使热声热机出现低稳定温差、高能量产出或更高的相对效率, 从而适应不同应用场合, 合理规划能源使用。
中图分类号:
[1] 麦志豪, 邹城, 陈观生, 等. 斯特林发动机回热器性能研究[J]. 广东工业大学学报, 2014, 31(1): 121-125. MAI Z H, ZOU C, CHEN G S, et al. Performance study of heat regenerators of stirling engines [J]. Journal of Guangdong University of Technology, 2014, 31(1): 121-125. [2] BACKHAUS S, SWIFT G W. A thermoacoustic Stirling heat engine [J]. Nature, 1999, 399(6734): 335-338. [3] BACKHAUS S, SWIFT G W. A thermoacoustic-Stirling heat engine: detailed study [J]. The Journal of the Acoustical Society of America, 2000, 107(6): 3148-3166. [4] CEPERLEY P H. A pistonless Stirling engine—the traveling wave heat engine [J]. Journal of the Acoustical Society of America, 1979, 66(5): 1508-1513. [5] YAZAKI T, IWATA A, MAEKAWA T, et al. Traveling wave thermoacoustic engine in a looped tube [J]. Phys rev lett, 1998, 81(15): 3128-3131. [6] BLOK K D. Novel 4-stage traveling wave thermoacoustic power generator[C]//ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels and Minichannels. Montreal: American Society of Mechanical Engineers, 2010: 73-79. [7] KEES D B. Multi-stage traveling wave thermoacoustics in practice[C]//19th International Congresson Sound and Vibration. Vilnius: International Institute of Acoustics and Vibration(ⅡAV) and Vilnius University, 2012: 1-8. [8] YU Z, JAWORSKI A J, BACKHAUS S. Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy [J]. Applied Energy, 2012, 99: 135-145. [9] KANG H, CHENG P, YU Z, et al. A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators [J]. Applied Energy, 2015, 137: 9-17. [10] 杨睿, 王祎, 封叶, 等. 带阻性管的环路行波热声发动机性能研究[J]. 工程热物理学报, 2017, 38(5): 937-940. YANG R, WANG Y, FENG Y, et al. Study on the performance of a looped thermoacoustic prime mover with resistance tube [J]. Journal of Engineering Thermophysics, 2017, 38(5): 937-940. [11] JIN T, YANG R, WANG Y, et al. Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/ resistance tube [J]. Applied Energy, 2016, 183: 290-298. [12] JIN T, YANG R, WANG Y, et al. Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator [J]. Energy Conversion & Management, 2016, 123: 243-251. [13] KRUSE A, RUZIEWICZ A, NEMS A, et al. Numerical analysis of competing methods for acoustic field adjustment in a looped-tube thermoacoustic engine with a single stage [J]. Energy Conversion & Management, 2019, 181: 26-35. [14] CHEN B, JIAO F, HO K, et al. Numerical analysis of acoustic field in a 2-stage traveling wave thermoacoustic engine based on DeltaEC [J]. Energy Procedia, 2017, 105: 4615-4620. [15] CHEN B, TIAN S, LIU J, et al. The development of a two-stage traveling wave thermoacoustic engine [J]. Energy Procedia, 2017, 105: 1551-1556. [16] SWIFT G W, GARRETT S L. Thermoacoustics: a unifying perspective for some engines and refrigerators [J]. Journal of the Acoustical Society of America, 2018, 113(5): 2379-2381. |
[1] | 林杰辉, 潘永雄, 苏成悦, 孙安全. 高PF全电压可变负载BCM单级APFC反激变换器环路设计[J]. 广东工业大学学报, 2016, 33(03): 26-31. |
|