广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 55-61.doi: 10.12052/gdutxb.200085
郑子钊1, 彭世国1, 付志文1, 徐云剑2
Zheng Zi-zhao1, Peng Shi-guo1, Fu Zhi-wen1, Xu Yun-jian2
摘要: 基于脉冲控制方法, 对一类多权重复杂网络的鲁棒H∞同步问题进行了研究, 设计了新颖的分布式脉冲控制器。通过在传统的分布式脉冲控制器中添加节点状态变量与同步状态间的误差状态反馈项, 以保证多权重复杂网络在受到外部干扰影响时实现鲁棒H∞同步。基于Lyapunov稳定性理论、数学归纳法和其他相关知识, 以线性矩阵不等式(Linear Matrix Inequalities, LMIs)的形式给出了网络实现鲁棒H∞同步的充分条件。最后, 数值仿真验证了结论的有效性。
中图分类号:
[1] ZHU S, XU S, SETIA S, et al. Establishing pairwise keys for secure communication in ad hoc networks: a probabilistic approach[C]//International Conference on Network Protocols. Atlanta: IEEE, 2003: 326-335. [2] ZHOU Z, PLISHKER W, BHATTACHARYYA S S, et al. Scheduling of parallelized synchronous dataflow actors for multicore signal processing [J]. Signal Processing Systems, 2016, 83(3): 309-328. [3] LI Y, GE S S. Force tracking control for motion synchronization in human-robot collaboration [J]. Robotica, 2016, 34(6): 1260-1281. [4] WU Y, FU S, LI W, et al. Exponential synchronization for coupled complex networks with time-varying delays and stochastic perturbations via impulsive control [J]. Journal of The Franklin Institute-engineering and Applied Mathematics, 2019, 356(1): 492-513. [5] ZONG G, YANG D. H∞ synchronization of switched complex networks: a switching impulsive control method [J]. Communications in Nonlinear Science and Numerical Simulation, 2019(77): 338-348. [6] CHEN W H, JIANG Z Y, LU X M, et al. H-infinity synchronization for complex dynamical networks with coupling delays using distributed impulsive control [J]. Nonlinear Analysis Hybrid Systems, 2015(17): 111-127. [7] SHEN H, PARK J H, WU Z, et al. Finite-time H∞ synchronization for complex networks with semi-Markov jump topology [J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 24(1): 40-51. [8] LI F, SHEN H. Finite-time H∞ synchronization control for semi-Markov jump delayed neural networks with randomly occurring uncertainties [J]. Neurocomputing, 2015(166): 447-454. [9] QIU S, HUANG Y, REN S, et al. Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay [J]. Neurocomputing, 2018(275): 1250-1260. [10] LI N, SUN H, JING X, et al. Exponential synchronisation of united complex dynamical networks with multi-links via adaptive periodically intermittent control [J]. Iet Control Theory and Applications, 2013, 7(13): 1725-1736. [11] QIN Z, WANG J, HUANG Y, et al. Synchronization and H∞ synchronization of multi-weighted complex delayed dynamical networks with fixed and switching topologies [J]. Journal of The Franklin Institute-engineering and Applied Mathematics, 2017, 354(15): 7119-7138. [12] PENG H, WEI N, LI L, et al. Models and synchronization of time-delayed complex dynamical networks with multi-links based on adaptive control [J]. Physics Letters A, 2010, 374(23): 2335-2339. [13] WANG J, QIN Z, WU H, et al. Finite-time synchronization and H∞ synchronization of multiweighted complex networks with adaptive state couplings [J]. IEEE Transactions on Cybernetics, 2020, 50(2): 600-612. [14] WANG J, QIN Z, WU H, et al. Analysis and pinning control for output synchronization and H∞ output synchronization of multiweighted complex networks [J]. IEEE Transactions on Cybernetics, 2018, 49(4): 1-13. [15] SUN H, ZHANG Q, LI N, et al. Pinning synchronization of directed complex dynamical networks with multi-links [J]. International Workshop on Chaos Fractals Theories and Applications, 2010(49): 24-28. [16] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(2): 75-80. ZHANG Z H, PENG S G. Leader-following consensus of second-order multi-agent systems with switching topology [J]. Journal of Guangdong University of Technology, 2018, 35(2): 75-80. [17] HORN R A, HORN R A, JOHNSON C R. Topics in matrix analysis[M]. Cambridge: Cambridge University Press, 1991. [18] BOYD S, El GHAOUI L, FERON E, et al. Linear matrix inequalities in system and control theory[M]. Philadelphia: Society for Industrial & Applied Mathematics, 1994: 28-29. |
[1] | 莫赞, 范梦婷, 刘洪伟, 严杨帆. 基于在线用户行为的产品非对称竞争市场结构研究[J]. 广东工业大学学报, 2023, 40(02): 111-119. |
[2] | 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55. |
[3] | 胡滨, 关治洪, 谢侃, 陈关荣. 复杂网络动力学与智能控制[J]. 广东工业大学学报, 2021, 38(06): 9-19. |
[4] | 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80. |
[5] | 陆靖桥, 傅秀芬, 蒙在桥. 考虑社群结构的复杂网络的级联故障抵制模型[J]. 广东工业大学学报, 2016, 33(05): 22-27. |
[6] | 后锐,罗智,伍嘉文. 深成指数时间序列的网络拓扑结构研究[J]. 广东工业大学学报, 2013, 30(3): 75-79. |
|