广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (03): 48-54.doi: 10.12052/gdutxb.200111
汝少楠, 何元烈, 叶星余
Ru Shao-nan, He Yuan-lie, Ye Xing-yu
摘要: 视觉里程计在移动机器人的定位导航中发挥着关键性作用, 但当前的算法在运行速度、轨迹精度和鲁棒性等方面依然存在改善空间。为提高相机轨迹精度, 提出基于稀疏直接法的闭环检测算法。该算法直接提取两种特征组成混合型特征点提升系统鲁棒性, 混合型特征点用于跟踪和匹配关键帧, 使视觉里程计能够检测闭环, 再用位姿图优化提升定位精度。实验结果表明在复杂环境中具有较强的鲁棒性, 并且在速度和精度之间取得平衡。
中图分类号:
[1] TAKETOMI T, UCHIYAMA H, IKEDA S. Visual SLAM algorithms: a survey from 2010 to 2016 [J]. IPSJ Transactions on Computer Vision and Applications, 2017, 9(1): 16-26. [2] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//2007 6th IEEE and ACM international symposium on mixed and augmented reality. Nara: IEEE, 2007: 225-234. [3] GOMEZ-OJEDA R, MORENO F A, ZUÑIGA-NOËL D, et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments [J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746. [4] MUÑOZ-SALINAS R, MEDINA-CARNICER R. UcoSLAM: simultaneous localization and mapping by fusion of key points And squared planar markers [J]. Pattern Recognition, 2020, 101: 107-193. [5] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accurate monocular SLAM system [J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163. [6] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: Fast semidirect monocular visual odometry[C]//2014 IEEE international conference on robotics and automation (ICRA). Hong Kong: IEEE, 2014: 15-22. [7] 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(4): 35-41. CEN S J, HE Y L, CHEN X C. A monocular depth estimation combined with attention and unsupervised deep learning [J]. Journal of Guangdong University of Technology, 2020, 37(4): 35-41. [8] ANGELI A, FILLIAT D, DONCIEUX S, et al. Fast and Incremental method for loop-closure detection using bags of visual words [J]. IEEE Transactions on Robotics, 2008, 24(5): 1027-1037. [9] 何元烈, 陈佳腾, 曾碧. 基于精简卷积神经网络的快速闭环检测方法[J]. 计算机工程, 2018, 44(6): 182-187. HE Y L, CHEN J T, ZENG B. Fast closed loop detection method based on simplification convolutional neural network [J]. Computer Engineering, 2018, 44(6): 182-187. [10] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 International ConfeRence on Computer Vision. Barcelona: IEEE, 2011: 2564-2571. [11] GÁLVEZ-LÓPEZ D, TARDOS J D. Bags of binary words for fast place recognition in image sequences [J]. IEEE Transactions on Robotics, 2012, 28(5): 1188-1197. [12] GAO X, WANG R, DEMMEL N, et al. LDSO: direct sparse odometry with loop closure[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 2198-2204. [13] KÜMMERLE R, GRISETTI G, STRASDAT H, et al. g2o: A general framework for graph optimization[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 3607-3613. [14] MUR-ARTAL R, TARDÓS J D. Orb-slam2: an open-source slam system for monocular, stereo, and RGB-D cameras [J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. [15] BURRI M, NIKOLIC J, GOHL P, et al. The EuRoC micro aerial vehicle datasets [J]. The International Journal of Robotics Research, 2016, 35(10): 1157-1163. [16] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(3): 611-625. [17] ELVIRA R, TARDÓS J D, MONTIEL J M M. ORBSLAM-Atlas: a robust and accurate multi-map system[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau: IEEE, 2019: 6253-6259. |
[1] | 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76. |
[2] | 叶培楚, 李东, 章云. 基于双目强约束的直接稀疏视觉里程计[J]. 广东工业大学学报, 2021, 38(04): 65-70. |
[3] | 杨孟军, 苏成悦, 陈静, 张洁鑫. 基于卷积神经网络的视觉闭环检测研究[J]. 广东工业大学学报, 2018, 35(05): 31-37. |
[4] | 马晓东, 曾碧, 叶林锋. 基于BA的改进视觉/惯性融合定位算法[J]. 广东工业大学学报, 2017, 34(06): 32-36. |
[5] | 池鹏可, 苏成悦. 移动机器人中单目视觉里程计的研究[J]. 广东工业大学学报, 2017, 34(05): 40-44. |
|