广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (02): 73-82.doi: 10.12052/gdutxb.200118

• 综合研究 • 上一篇    下一篇

骨植入聚醚醚酮材料表面改性的研究进展

肖天华1,2, 刘荣涛1, 庞贻宇1, 李达1, 刘佳1, 闵永刚1,2   

  1. 1. 广东工业大学 材料与能源学院, 广东 广州 510006;
    2. 东莞华南设计创新院, 广东 东莞 523808
  • 收稿日期:2020-09-11 出版日期:2021-03-10 发布日期:2021-01-13
  • 通信作者: 刘佳(1978-),女,讲师,主要研究方向为生物芯片和生物组织工程、纳米材料等,E-mail:liujia@gdut.edu.cn;闵永刚(1963-),男,教授,博士生导师,主要研究方向为有机光电功能材料与器件、高性能聚合物、能源环保材料、生物芯片和生物组织工程等,E-mail:ygmin@gdut.edu.cn E-mail:liujia@gdut.edu.cn;ygmin@gdut.edu.cn
  • 作者简介:肖天华(1996-),男,硕士研究生,主要研究方向为生物组织工程
  • 基金资助:
    广东省“珠江人才计划”创新创业团队项目(2016ZT060412);广东工业大学百人计划项目(220418095)

Progress on Bone Graft PEEK about Surface Modification

Xiao Tian-hua1,2, Liu Rong-tao1, Pang Yin-yu1, Li Da1, Liu Jia1, Min Yong-gang1,2   

  1. 1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2. Dongguan South China Design and Innovation Institute, Dongguan 523808, China
  • Received:2020-09-11 Online:2021-03-10 Published:2021-01-13

摘要: 聚醚醚酮(Polyetheretherketone, PEEK)是一种半结晶的合成聚合物, 与传统修复骨缺损的生物材料相比, PEEK具有良好的生物相容性、化学稳定性、透光性和弹性模量与正常人骨相似等优点, 已被广泛应用于骨科移植。但PEEK的生物惰性使其在临床应用中存在局限性, 目前通过表面改性赋予PEEK材料表面生物活性是解决这个问题的有效途径。本文综述了近年来PEEK表面改性方法的研究现状和发展方向, 其中着重介绍了物理改性、化学改性以及涂层改性, 并分析了不同改性技术对于提高生物相容性的作用, 最后指出PEEK表面改性骨移植材料在医学领域中继续发展需要解决的问题, 要充分研究其在体内的每一阶段身体所做出的反应, 并保证其表面处理在整个生命周期内不会退化或磨损正常组织。

关键词: 聚醚醚酮, 表面改性, 生物活性, 骨整合, 抗菌

Abstract: Polyetheretherketone (PEEK) is a class of semi-crystalline polymer. Compared with traditional bone repair materials, PEEK possesses good biocompatibility, chemical stability, light transmittance and elastic modulus which is similar to that of normal human bone. Therefore it has been widely used in transplantation. However, the biological inertia of PEEK limits its clinical application. At now, the surface modification is an effective way to solve this problem. The current status of research and direction of development about PEEK surface modification methods in recent years are reviewed. And physical modification, chemical modification and coating modification are emphasized. The effects of different modification technologies on improving biocompatibility were analyzed. Finally, the problems are pointed out that need to be solved for PEEK surface modified bone graft material to continue to develop in the medical field. The body's reaction must be studied fully at every stage after the bone graft material was implanted in the body. And it is ensured that the surface treatment does not degrade or wear away normal tissues throughout the whole life cycle.

Key words: polyetheretherketone, surface modification, bioactivity, bone integration, antibacterial

中图分类号: 

  • R318.08
[1] BUCK E, LI H, CERRUTI M. Surface modification strategies to improve the osseointegration of poly(etheretherketone) and its composites [J]. Macromolecular Bioscience, 2019, 20(2): 1900271.
[2] MISHRA S, CHOWDHARY R. PEEK materials as an alternative to titanium in dental implants: a systematic review [J]. Clinical Implant Dentistry and Related Research, 2019, 21(1): 208-222.
[3] KURTZ S M, DEVINE J N. PEEK biomaterials in trauma, orthopedic, and spinal implants [J]. Biomaterials, 2007, 28(32): 4845-4869.
[4] PARK H, LEE J, MOON S, et al. The efficacy of the synthetic interbody cage and grafton for anterior cervical fusion [J]. Spine (Phila Pa 1976), 2009, 34(17): E591-E595.
[5] KOH Y, PARK K, LEE J, et al. Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: a review [J]. Materials Science and Engineering: C, 2019, 100: 70-81.
[6] TOTH J M, WANG M, ESTES B T, et al. Polyetheretherketone as a biomaterial for spinal applications [J]. Biomaterials, 2006, 27(3): 324-334.
[7] LU T, WEN J, QIAN S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus [J]. Biomaterials, 2015, 51: 173-183.
[8] CHEN M, OUYANG L, LU T, et al. Enhanced bioactivity and bacteriostasis of surface fluorinated polyetheretherketone [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16824-16833.
[9] WEN J, LU T, WANG X, et al. In vitro and in vivo evaluation of silicate-coated polyetheretherketone fabricated by electron beam evaporation [J]. ACS Applied Materials & Interfaces, 2016, 8(21): 13197-13206.
[10] ALOTAIBI N, NAUDI K, CONWAY D, et al. The current state of PEEK implant osseointegration and future perspectives: a systematic review [J]. European Cells and Materials, 2020, 40: 1-20.
[11] MA R, TANG T. Current strategies to improve the bioactivity of PEEK [J]. International Journal of Molecular Sciences, 2014, 15(4): 5426-5445.
[12] BRIEM D, STRAMETZ S, SCHRÖODER K, et al. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces [J]. Journal of Materials Science: Materials in Medicine, 2005, 16(7): 671-677.
[13] HA S W, KIRCH M, BIRCHLER F, et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation [J]. Journal of Materials Science: Materials in Medicine, 1997, 8(11): 683-690.
[14] AWAJA F, ZHANG S, JAMES N, et al. Enhanced autohesive bonding of polyetheretherketone (PEEK) for biomedical applications using a methane/oxygen plasma treatment [J]. Plasma Processes and Polymers, 2010, 7(12): 1010-1021.
[15] AWAJA F, BAX D V, ZHANG S, et al. Cell adhesion to PEEK treated by plasma immersion ion implantation and deposition for active medical implants [J]. Plasma Processes and Polymers, 2012, 9(4): 355-362.
[16] WASER-ALTHAUS J, SALAMON A, WASER M, et al. Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone [J]. Journal of Materials Science: Materials in Medicine, 2014, 25(2): 515-525.
[17] YU X, IBRAHIM M, LIU Z, et al. Biofunctional Mg coating on PEEK for improving bioactivity [J]. Bioactive Materials, 2018, 3(2): 139-143.
[18] KRATOCHVÍL J, ŠTĚRBA J, LIESKOVSKÁ J, et al. Antibacterial effect of Cu/C:F nanocomposites deposited on PEEK substrates [J]. Materials Letters, 2018, 230: 96-99.
[19] HUANG R Y M, SHAO P, BURNS C M, et al. Sulfonation of poly(ether ether ketone)(PEEK): kinetic study and characterization [J]. Journal of Applied Polymer Science, 2001, 82(11): 2651-2660.
[20] ZHAO Y, WONG H M, WANG W, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone [J]. Biomaterials, 2013, 34(37): 9264-9277.
[21] OUYANG L, ZHAO Y, JIN G, et al. Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK [J]. Biomaterials, 2016, 83: 115-126.
[22] ZHENG Y, LIU L, XIAO L, et al. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid [J]. Colloids and Surfaces B: Biointerfaces, 2019, 173: 591-598.
[23] FRISTRUP C J, JANKOVA K, HVILSTED S. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization [J]. Polymer Chemistry, 2010, 1(10): 1696.
[24] SUN Z, OUYANG L, MA X, et al. Controllable and durable release of BMP-2-loaded 3D porous sulfonated polyetheretherketone (PEEK) for osteogenic activity enhancement [J]. Colloids Surf B Biointerfaces, 2018, 171: 668-674.
[25] SHAH N J, HYDER M N, MOSKOWITZ J S, et al. Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings [J]. Sci Transl Med, 2013, 5(191): 183r-191r.
[26] SADAT-SHOJAI M, KHORASANI M, DINPANAH-KHOSHDARGI E, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures [J]. Acta Biomaterialia, 2013, 9(8): 7591-7621.
[27] LEE J H, JANG H L, LEE K M, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology [J]. Acta Biomaterialia, 2013, 9(4): 6177-6187.
[28] DONG T, DUAN C, WANG S, et al. Multifunctional surface with enhanced angiogenesis for improving long-term osteogenic fixation of poly(ether ether ketone) implants [J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14971-14982.
[29] QIU J, GENG H, WANG D, et al. Layer-number dependent antibacterial and osteogenic behaviors of graphene oxide electrophoretic deposited on titanium [J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12253-12263.
[30] YAN J, WANG C, LI K, et al. Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification [J]. International Journal of Nanomedicine, 2018, 13: 3425-3440.
[31] OUYANG L, DENG Y, YANG L, et al. Graphene-oxide-decorated microporous polyetheretherketone with superior antibacterial capability and in vitro osteogenesis for orthopedic implant [J]. Macromolecular Bioscience, 2018, 18(6): 1800036.
[32] OUYANG L, QI M, WANG S, et al. Osteogenesis and antibacterial activity of graphene oxide and dexamethasone coatings on porous polyetheretherketone via polydopamine-assisted chemistry [J]. Coatings, 2018, 8(6): 203.
[33] KWON G, KIM H, GUPTA K C, et al. Enhanced tissue compatibility of polyetheretherketone disks by dopamine-mediated protein immobilization [J]. Macromolecular Research, 2018, 26(2): 128-138.
[34] XU X, LI Y, WANG L, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application [J]. Biomaterials, 2019, 212: 98-114.
[35] ZHU Y, CAO Z, PENG Y, et al. Facile surface modification method for synergistically enhancing the biocompatibility and bioactivity of poly(ether ether ketone) that induced osteodifferentiation [J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27503-27511.
[36] ZHANG J, CAI L, WANG T, et al. Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration [J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(3): 965-976.
[37] LU T, LIU X, QIAN S, et al. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone [J]. Biomaterials, 2014, 35(22): 5731-5740.
[38] WANG X, LU T, WEN J, et al. Selective responses of human gingival fibroblasts and bacteria on carbon fiber reinforced polyetheretherketone with multilevel nanostructured TiO2 [J]. Biomaterials, 2016, 83: 207-218.
[39] WANG H, LU T, MENG F, et al. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation [J]. Colloids and Surfaces B: Biointerfaces, 2014, 117: 89-97.
[40] LU T, LI J, QIAN S, et al. Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone [J]. Journal of Materials Chemistry B, 2016, 4(17): 2944-2953.
[41] LU T, QIAN S, MENG F, et al. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation [J]. Colloids and Surfaces B: Biointerfaces, 2016, 142: 192-198.
[42] GAN K, LIU H, JIANG L, et al. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone [J]. Dental Materials, 2016, 32(11): e263-e274.
[43] WYSZOGRODZKA G, MARSZALEK B, GIL B, et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications [J]. Drug Discov Today, 2016, 21(6): 1009-1018.
[44] LIU X, GAN K, LIU H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering [J]. Dental Materials, 2017, 33(9): e348-e360.
[45] LIU W, LI J, CHENG M, et al. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant staphylococcus aureus [J]. Biomaterials, 2019, 208: 8-20.
[1] 张然, 梁亮, 宛焱, 胡龙. 纳米银水性抗菌木器涂料的研制[J]. 广东工业大学学报, 2015, 32(04): 40-45.
[2] 郑正男, 谭俊杰, 吴帅, 丁利君, 郑希. 单宁酸的体外抑菌作用及其影响因素[J]. 广东工业大学学报, 2015, 32(04): 46-51.
[3] 代春迎, 谭竹钧, 黎子蔚. 诱导前后地鳖血淋巴抗菌活性的研究[J]. 广东工业大学学报, 2014, 31(1): 136-140.
[4] 袁国正. 复方中草药在超声波药物耦合剂中的抗菌效果[J]. 广东工业大学学报, 2011, 28(4): 74-78.
[5] 袁子龙1, 张伟1, 赵韦人1, 唐露新2, 盛霞1, 谢民强3. 热疗用磁流体的热磁稳定性研究[J]. 广东工业大学学报, 2011, 28(3): 62-65.
[6] 余双平; 邓淑华; 黄慧民; 周立清; 漆小龙; . 超微粉体的表面改性技术进展[J]. 广东工业大学学报, 2003, 20(2): 70-76.
[7] 郭鹏; 陈敏; 陈中豪; . 高效降解木质素优势混合菌的诱变选育研究[J]. 广东工业大学学报, 1997, 14(4): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!