广东工业大学学报 ›› 2013, Vol. 30 ›› Issue (3): 65-69.doi: 10.3969/j.issn.1007-7162.2013.03.012

• 综合研究 • 上一篇    下一篇

一种PET图像感兴趣区域体积特征的计算方法

王振友, 郑少杰,何远才,林洁芝,苏娜,龙洁丽   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2012-04-28 出版日期:2013-09-30 发布日期:2013-09-30
  • 作者简介:王振友(1979-),男,副教授,主要研究方向为医学图像处理、数学模型应用.
  • 基金资助:

    广东省大学生创新实验项目(1184510143)

A Calculation Method of the Volume of PET Image in the Regionofinterest

Wang Zhen-you, Zheng Shao-jie, He Yuan-cai, Lin Jie-zhi, Su Na, Long Jie-li   

  1. School of Applied Mathematics,Guangdong University of Technology, Guangzhou 510520,China
  • Received:2012-04-28 Online:2013-09-30 Published:2013-09-30

摘要: 针对14张脑瘤(Positron Emission Tomogrophy,PET)图像切片,将感兴趣区域分割出来,利用积分原理计算其体积特征.首先提取出图片所有点的像素值,然后利用自组织神经网络将像素值进行分类,其中自组织神经网络的输入节点经过多次的试验确定为2×2.通过自组织神经网络,可以将各个元素点进行标志,使得图片的分离简单精确并且计算出目标区域的元素点数.最后通过Matlab对14个切片构建出目标区域的三维立体图,利用积分原理算出该目标区域的体积为9.9 cm3.该方法合理,计算结果有效,且计算结果可对临床诊断有辅助作用.

关键词: 自组织神经网络;正电子发射断层扫描;感兴趣区域;积分原理;图像分割

Abstract: A case study was conducted of the slicing of 14 cerebroma PET images, of which interesting parts were divided, with a calculation of their volume features followed. Firstly, all pixels in these images were extracted, and then classified according to the self-organizing neural network, the input node of which was determined as 2×2 through repeated experiments. By marking each element point through the self-organizing neural network, it is easier and more accurate to extract images and to calculate the number of elements within the target zone. With the use of Matlab, it built the threedimension chart of the target zone within the 14 slicings. Finally, the volume of target areas was calculated by using the integral principle. Experimental results show this theory is a plausible one with effective outcome, which can offer assistance in clinical diagnosis.

Key words: self organizing artificial neural network; positron emission tomography(PET); region-of-interest; integral principle; image segmentation

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!