广东工业大学学报 ›› 2014, Vol. 31 ›› Issue (1): 36-39.doi: 10.3969/j.issn.1007-7162.2014.01.007

• 综合研究 • 上一篇    下一篇

一种粒子群-Mamdani模糊神经网络的参数优化新算法

姚蕾   

  1. 广东工业大学 应用数学学院,广东 广州 515000
  • 收稿日期:2012-11-13 出版日期:2014-03-29 发布日期:2014-03-29
  • 作者简介:姚蕾(1986-),女,硕士研究生,主要研究方向为模糊分类算法.
  • 基金资助:

    国家自然科学基金资助项目(61202269)

A Novel Parameter Optimization Algorithm for Mamdani Fuzzy Neural Networks Based on PSO

Yao Lei   

  1. School of Applied Mathematics,Guangdong University of Technology,Guangzhou 515000,China
  • Received:2012-11-13 Online:2014-03-29 Published:2014-03-29

摘要: 为了避免Mamdani模型参数优化易陷入局部最优,提出了构造Mamdani模糊神经网络的新算法.该算法用基于粒子群算法的模糊聚类确定Mamdani模糊神经网络的初始参数,然后用PSO算法对前件参数和后件参数进行优化.最后用梯度下降法对参数进一步寻优,从而实现模糊规则的自动调整、修改和完善.实验结果证明,该方法提高了Mamdani模糊神经网络的逼近能力.

关键词: 粒子群算法;模糊聚类;模糊规则库;Mamdani模糊神经网络;优化;梯度下降法

Abstract: In order to avoid local optimum of Mamdani model parameter optimization, a novel algorithm for Mamdani neural network was proposed. The initial parameters of Mamdani Fuzzy Neural Network(FNN) were generated by Fuzzy Cmeans clustering, based on PSO, and then optimized by using PSO. Finally, Gradient descent method was adopted for further optimizing the parameters so that the fuzzy rules could be automatically adjusted, modified and improved. Numerical experiments show that the presented algorithm improves the approximation ability of Mamdani FNN.

Key words: particle swarm optimization(PSO); fuzzy cmeans clustering(FCM);fuzzy rules; Mamdani neural networks; optimization; gradient descent method

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!