广东工业大学学报 ›› 2015, Vol. 32 ›› Issue (1): 103-108.doi: 10.3969/j.issn.1007-7162.2015.01.021

• 综合研究 • 上一篇    下一篇

基于NN的无信号混合交通交叉口自行车冲突避让行为建模仿真

田雨1,黄玲2,陈罡2   

  1. 1.沈阳体育学院 体育信息技术系, 辽宁 沈阳 110102; 2.华南理工大学 土木与交通学院, 广东 广州 510640
  • 收稿日期:2014-04-02 出版日期:2015-03-05 发布日期:2015-03-05
  • 作者简介:田雨(1982-),女,讲师,主要研究方向为计机体育仿真、数据挖掘等. 黄玲(1979-),女,讲师,博士,主要研究方向为智能交通、交通行为分析和交通仿真.E-mail:hling@scut.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(51408237);广东省重大科技专项资助项目(2012A010800007)

Modeling and Simulation of Bicycle Accident Avoidance at Mixed NonSignalized Traffic Intersections Based on NN

Tian Yu1,Huang Ling2, Chen Gang2   

  1. 1. Department of Sports Information Technology, Shenyang Sport University, Shenyang 110102, China; 2.School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China
  • Received:2014-04-02 Online:2015-03-05 Published:2015-03-05

摘要: 在我国城市无信号交叉口,自行车与混合交通流的其他车辆(如机动车、自行车、行人)的冲突避让行为,难以通过传统数学方法建立准确的仿真模型.本文在以往交叉口自行车微观模型基础上,采用冲突车辆与自行车的相对位置矢量、相对速度矢量以及期望速度与实际速度相对矢量作为输入,自行车二维空间加速度矢量作为双输出的神经网络建立数学模型.利用实地采集自行车-机动车冲突、自行车-自行车冲突和自行车-行人冲突样本数据,进行神经网络训练和仿真验证,并对骑车者性别、冲突车辆类型和冲突速度进行了模型灵敏度分析.结果表明,模型能较好地反映无信号交叉口自行车与其他车辆及障碍物的冲突避让行为.

关键词: 自行车; 冲突避让行为; 神经网络; 无信号交叉口

Abstract: The modeling and simulation of bicycle accident avoidance with other vehicles (motorcar/other bicycles/pedestrians) at non-signalized intersections is of great importance. However, it is very difficult to simulate the accident avoidance of individual bicycle because of the great variation, characteristics and traffic environment in cycling. The current study proposes a back propagation neural network (BPNN) approach to simulate the bicycle accident avoidance at nonsignalized intersections. A computer-based four-layered (NN) model was developed for bicycle accident avoidance modeling. The NN model was trained, validated with field data and then compared with other models. It was found that the NN model performed well. Results showed that the NN model could produce reasonable estimates for individual bicycle at non-signalized intersections.

Key words: bicycle; accident avoidance; neural network; nonsignalized intersections

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!