广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (1): 18-19.

• 综合研究 • 上一篇    下一篇

二维一阶非线性方程的反周期解

  

  1. 广东工业大学应用数学学院,广东广州510006
  • 出版日期:2010-03-25 发布日期:2010-03-25
  • 作者简介:周邵隆(1982一),男,硕士研究生,主要研究方向为非线性泛函分析

The Existence Problems with Anti-periodic Solutions for Two-dimension Nonlinear Equations

  1. Faculty of Applied Mathematics,Guangdong University of Technology,Guangzhou 5 10006,China
  • Online:2010-03-25 Published:2010-03-25

摘要: 在Hilbert空间中考虑二维非线性方程,探讨在何种条件下其具有反周期解.证明在一定条件下,方程具有反周期解.

关键词: Leray—Schauder拓扑度;希尔伯特空间;反周期解

Abstract: It discusses the existence problem with anti--periodic solutions for two·-dimension nonlinear equation in Hilbert space.Under certain conditions,the equation has been proved to have anti-poriodic solutions.  

Key words: Leray-Schauder degree;Hilbert space;anti—periodic solutions

[1]Okochi H.On the existence of periodic solutions to nonlinear ahstract parabolic equations[J].J Math Soc,1988(40):541—553.

[2]Okochi H.On the existence of anti—periodic solutions to a nonlinear evolution equation associated with differential operators[J].J Funct Anal,1990(91):246—258.

[3]Chen Y Q,Wang X D,xu H X.Anti—periodic solutions for semilinear evolution equations[J].J Math Anal Appl,2002.273:627—636.

[4]Chen Y Q.Note on Massera§theorem on anti—periodic solution[J].Advances in Math Sci and Appl,1999(9):125—128.

[5]Chen Y Q,Cho Y J,ORegan D.Antiperiodic solutions for evolution equations with mapping in class(S+)[J].Math Nachr,2005,278:335—362.

[6]Chen Y Q.Antiperiodic solutions for semilinear evolution equations[J].J Math Anal Appl,2006,315:337—348.
 
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!