广东工业大学学报 ›› 2010, Vol. 27 ›› Issue (3): 46-50.

• 综合研究 • 上一篇    下一篇

传统优化算法与竞选算法应用于机械优化设计的比较

  

  1. 1.广东工业大学材料与能源学院,广东广州510006;2.广东工业大学机电工程学院,广东广州510006
  • 出版日期:2010-09-25 发布日期:2010-09-25
  • 作者简介:贺春华(1963-),男,副教授,主要研究方向为优化设计

Comparison Between the Traditional and Election-survey Algorithms for M echanical Optimum Design

  1. 1.Faculty of Materials and Energy,Guangdong University of Technology,Guangzhou 5 10006,China;
    2.Faculty of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China
  • Online:2010-09-25 Published:2010-09-25

摘要: 论述了机械优化设计中的传统优化设计算法,同时介绍了一种现代的优化设计方法——竞选算法的原理及其求解步骤.采用传统优化设计算法与竞选算法分别对箱形盖板和两杆桁架结构的优化设计问题进行求解,比较了两者间求解方式上的特点,并就竞选算法与传统优化算法间求解效果进行了比较.结果表明,竞选算法是一种非常有效的机械优化设计方法.

关键词: 优化;竞选算法;机械设计;惩罚函数法

Abstract: The traditional optimized algorithms in machine optimization design are demonstrated.A modern optimized design method-election-survey algorithm is introduced with its theory and characteristics.The results of applying the traditional and the election-survey algorithms are obtained,based on the optimum design of the box-shaped cover board and a two-bar truss structure.And then the optimal solutions and the characteristics of the two algorithms aye compared.The results show that the election-survey algorithm is an effective method for mechanic optimum design.

Key words: optimization;election-survey algorithm;mechanical design;penalty function method

[1]孙靖民,梁迎春.机械优化设计[M].北京:机械工业出版社,2006.

[2]Holland J H.Genetic Algorithms[J].Scientific American,1992(7):44-50.

[3]Krikpatrick S,Gelett C,Veechi M.Optimization by simulated annealing[J].Science,1983,220(8):671-80.

[4]Dorigo M,Maniezzo V,Colorni A.Ant system:Optimization by a colony of cooperating agents[J].IEEE Trans on system,Man and Cybernetics—Part B,1996,26(1):2941.

[5]Kennedy J,Eberhart R.Particle swarm optimization[C]∥Proceeding IEEE international Conference on Neural Networks,Piscataway,NJ,USA:IEEE Press,1995,4:1942-1948.

[6]Cvijovic D,Kilnowski J.Tabuo Search:An Approach to the Multiple Minima Problem[J].Science:1995,67(3):664-666.

[7]贺春华,吕文阁,张湘伟.竞选算法及其在函数全局最优化问题中的应用[J].计算机工程与应用,2010,46(11):196-199.

[8]罗述全.传统优化算法与遗传算法的比较[J].湖北工业大学学报,2007,22(3):32-35.

[9]陈立周.机械优化设计方法[M].北京:冶金工业出版社,2005.

[10]Joines J A,Houck C R.On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’S[C]//Proceedings of the First IEEE

Conference on Evolutionary Computation,Piscataway,NJ,USA:IEEE Press,1994:579-584.

[11]Wolpert D H,Macready W G.No Free Lunch Theorems for Optimiz~ion[J].IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!