广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (3): 49-53.doi: 10.3969/j.issn.1007-7162.2012.03.009

• 综合研究 • 上一篇    下一篇

压缩感知原理在盲信号分离中的应用

王涛文   

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 收稿日期:2011-12-23 出版日期:2012-09-20 发布日期:2012-09-20
  • 作者简介:王涛文(1985-),男,硕士,主要研究方向为信号与图像处理.
  • 基金资助:

    国家自然科学基金资助项目(60974077); 广东省自然科学基金资助项目(10251009001000002)

The Application of Compressed Sensing in Blind Source Separation

Wang Taowen   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2011-12-23 Online:2012-09-20 Published:2012-09-20

摘要: 主要阐述了压缩感知的基本原理,介绍了压缩感知的3个基本问题:信号的稀疏表示、稀疏基与测量矩阵的不相关性和信号的重构,分析了它与盲信号分离之间的联系,为解决盲信号分离问题提供了一个新的途径.最后通过具体实验说明它在盲信号分离上的应用.

关键词: 压缩感知;稀疏;不相关;信号分离

Abstract: Compressed Sensing has been a new signal sampling theory in recent years, for it overcomes the high rate of sampling defects of traditional Nyquist signal sampling theory, It presented the basic principles of Compressed Sensing,  introduced three fundamental questions of Compressed Sensingthe sparseness of signals、irrelevance between sparse matrix and measurement matrix, and reconstruction of the signals,and analyzed the contact between Compressed Sensing and Blind Source Separation. Then, it offered a new way to solve the problem of Blind Source Separation. Finally, through the experiment it showed its application in Blind Source Separation.

Key words: compressed sensing; sparse; irrelevance; signal separation

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!