广东工业大学学报 ›› 2013, Vol. 30 ›› Issue (3): 75-79.doi: 10.3969/j.issn.1007-7162.2013.03.014

• 综合研究 • 上一篇    下一篇

深成指数时间序列的网络拓扑结构研究

后锐,罗智,伍嘉文   

  1. 广东工业大学 管理学院,广东 广州 510520
  • 收稿日期:2013-03-31 出版日期:2013-09-30 发布日期:2013-09-30
  • 作者简介:后锐(1976-),男,副教授,博士,主要研究方向为管理复杂性、产业组织与动态竞争.
  • 基金资助:

    国家自然科学基金资助项目(71103044);广东省普通高校人文社会科学研究基地重大项目(10JDXM63005)

Network Topology of Shenzhen Component Index Time Series

Hou Rui, Luo Zhi, Wu Jia-wen   

  1. School of Management, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2013-03-31 Online:2013-09-30 Published:2013-09-30

摘要: 以2000年~2010年中国股市深圳成指的收盘价数据为依据,利用可见图方法将指数时间序列转化为复杂网络,计算和分析了复杂网络的拓扑结构指标,发现该网络具有典型的小世界特征、无标度特征和自相似性,并针对网络所呈现的特征进行了深入解释.研究发现,将金融时间序列转化为复杂网络能够从一个新的视角揭示金融系统复杂性及其内在的结构规律,为预测金融市场提供了新的思路.

关键词: 股票市场;时间序列数据;复杂网络;分形特征

Abstract: Based on the closing price data of Shenzhen Component Index in Chinese stock market from 2000 to 2010, it turned the component index time series into complex networks by the visible diagram method, calculates, analyzed these complex networks' topological structure index, and found that these networks have the typical network characteristics of a small world and self-similarity, being scale-free. Finally, it gave an explanation in detail of this phenomenon. The study finds that a new perspective to explore the complexity of the financial system and its internal structure can be acquired by turning the financial time series into complex networks, which provides a new way of thinking to predict financial markets.

Key words: stock market; time series data; complex network; fractal characteristic

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!