广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (01): 35-40.doi: 10.12052/gdutxb.170123

• • 上一篇    下一篇

模糊熵权法和CCPSO算法的含风电场电力系统多目标无功优化

陈璟华1, 邱明晋1, 郭经韬2, 唐俊杰1   

  1. 1. 广东工业大学 自动化学院, 广东 广州 510006;
    2. 中国能源建设集团广东省电力设计研究院有限公司, 广东 广州 510663
  • 收稿日期:2017-08-15 出版日期:2018-01-09 发布日期:2017-12-22
  • 作者简介:陈璟华(1974-),女,副教授,博士,主要研究方向为电力系统运行与优化.
  • 基金资助:
    中央财政支持地方高校发展专项资金项目(粤财教[2016]202号)

Multi-objective Reactive Power Optimization in Electric Power System with Wind Farm Based on Fuzzy Entropy Weight Method and CCPSO Algorithm

Chen Jing-hua1, Qiu Ming-jin1, Guo Jing-tao2, Tang Jun-jie1   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Electric Power Design Institute Co, Ltd. of China Energy Engineering Group, Guangzhou 510663, China
  • Received:2017-08-15 Online:2018-01-09 Published:2017-12-22

摘要: 研究了含双馈风电机组的电力系统多目标无功优化问题,分析了双馈风电机组的无功特性,将风电场作为连续的无功调节手段参与电力系统无功优化. 提出一种基于模糊商权法和组合混沌序列动态粒子群算法(CCPSO)的多目标无功优化方法. 利用模糊熵权法解决主观权值和客观权值的缺陷,建立以静态电压稳定浴度、节点电压和有功网损为目标的含风电场多目标无功优化决策模型. 针对利用传统粒子群算法进行求解时,易出现局部收敛等问题,结合Chebyshev映射和Logistic映射,在粒子初始化过程中运用一种组合混沌映射,增强初始粒子的均匀性,同时将Logistic混沌优化引入到算法寻优过程中,使算法全局寻优能力得到加强. 以IEEE14节点系统为例进行仿真实验,验证所提方法的有效性和实用性.

关键词: 熵权法, 风电场, 组合混沌序列, 无功优化, 电力系统

Abstract: A study is conducted on the reactive power optimization in distribution network of the wind farm. The reactive power characteristics of the double-fed wind turbine are analyzed, and the wind farm is used as a continuous reactive power adjustment means to participate in the reactive power optimization of the power system. A multi-objective reactive power optimization method is proposed based on fuzzy quotient and chaotic sequence dynamic particle swarm optimization algorithm. The fuzzy entropy weight method is used to solve the defects of subjective weight and objective weight, and a multi-objective reactive power optimization decision model with wind power is proposed based on static voltage stability margin, voltage deviation and active power loss. In order to solve the local convergence with traditional particle swarm algorithm, combined with Chebyshev mapping and Logistic mapping, a combinatorial chaotic mapping is used to enhance the homogeneity of the initial particles in the particle initialization, and Logistic chaos optimization is introduced to the process of algorithm optimization, strengthening the global optimization ability of the algorithm. The IEEE14-node system is used as a test case, and the result proves the feasibility and validity of the proposed method.

Key words: entropy weight method, wind farm, combinatorial chaotic sequence, reactive power optimization, power system

中图分类号: 

  • TM714
[1] 符政鑫, 刘霜, 段意强, 朱伟东. 一种电网需求响应资源参与天然气市场的协调框架[J]. 广东工业大学学报, 2023, 40(02): 64-73.
[2] 邱明晋, 陈璟华, 唐俊杰. 含风电场最优潮流及其关键技术研究综述[J]. 广东工业大学学报, 2018, 35(02): 63-68,94.
[3] 郭经韬, 陈璟华, 周俊, 许伟龙. 基于组合混沌序列动态粒子群算法的电力系统无功优化[J]. 广东工业大学学报, 2014, 31(2): 85-89.
[4] 郭壮志,吴杰康,周永旺,徐亮. 考虑互动特性的水火电力系统优化调度策略[J]. 广东工业大学学报, 2013, 30(2): 47-56.
[5] 胡廷鹤,孟安波. 基于虚拟极值粒子群的电网无功优化研究[J]. 广东工业大学学报, 2012, 29(4): 49-53.
[6] 陈少华; 陈璟华; 杨宜民; . 基于多Agent技术的自适应继电保护系统研究[J]. 广东工业大学学报, 2005, 22(1): 78-82.
[7] 石莹; 李日隆; . 发-输电系统可靠性评估及计算程序研究[J]. 广东工业大学学报, 1998, 15(s1): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!