广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 54-60.doi: 10.12052/gdutxb.170144

• 综合研究 • 上一篇    下一篇

广告关键字群组角色组合投资预测研究

刘冬宁1, 武小亮1, 卢明健2, 卢明俊1   

  1. 1. 广东工业大学 计算机学院, 广东 广州 510006;
    2. 深圳大学 土木工程学院, 广东 深圳 518060
  • 收稿日期:2017-10-31 出版日期:2018-05-09 发布日期:2018-04-26
  • 作者简介:刘冬宁(1979-),男,副教授,博士,主要研究方向为协同计算、人工智能逻辑.E-mail:liudn@gdut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61402118);广东省科技计划项目(2016B010108007);广州市科技计划项目(201604020145);广州市天河区科技计划项目(201602YH029)

Bidding Prediction of Advertisement Keywords via Group Role Combination

Liu Dong-ning1, Wu Xiao-liang1, Lu Ming-jian2, Lu Ming-jun1   

  1. 1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China;
    2. College of Civil Engineering, Shenzhen University, Shenzhen 518060, China
  • Received:2017-10-31 Online:2018-05-09 Published:2018-04-26

摘要: 为解决广告投入成本受限时通过在线关键词投资与组合使营销利润最大化及投资合理化问题,以“基于角色的协同”工程方法及其E-CARGO模型对淘宝商家的广告关键词投资问题进行建模,结合历史数据,采用群组角色组合线性规划方法对广告关键词投资做效益计算,以获得周期性历史数据预测与支持下的广告关键字最佳投资方案.通过实验仿真论证,该方法高效、可靠,能使投资者在投资费用受限情况下尽可能利润最大化,并对投资回报率问题与投资区间进行了分析,经过定量计算与定性分析给出理性投资建议.

关键词: 投资组合, 广告关键词, 基于角色的协同, E-CARGO, 线性规划

Abstract: With respect to the cost of advertising investment being limited, the processing of rationalizing and maximizing marketing investment via online keyword bidding is hard. In order to solve this problem, an optimization method is proposed, which is based on Role-Based Collaboration (RBC) and its E-CARGO model. According to history data, it models the problem by mapping keywords and their combinations to roles and groups (Group Role Combination) and using linear programming to obtain the best investment prediction. The proposed methods are verified by simulation experiments. The experimental results present the practicability of the proposed solutions. Using the proposed methods, decision makers need only to provide investment budget. The maximal profitability, the rate of return and the investment range are obtained.

Key words: portfolio, advertising keywords, role-based collaboration, E-CARGO, linear programming

[1] CHEN R Y, XU W. The determinants of online customer ratings:a combined domain ontology and topic text analytic approach[J]. Electron Commer Research, 2017, 17(1):31-50.
[2] SAYADI M K, MAKUI A. Optimal advertising decisions for promoting retail and online channels in a dynamic framework[J]. International Transactions in Operational Research, 2014, 21(5):777-796.
[3] ZHANG J, GOU Q L, LI S, et al. Cooperative advertising with accrual rate in a dynamic supply chain[J]. Dynamic Games and Applications, 2017, 7(1):112-130.
[4] GASSER S M, RAMMERSTORFER M, WEINMAYER K. Markowitz revisited:Social portfolio engineering[J]. European Journal of Operational Research, 2017, 258(3):1181-1190.
[5] QIN Z F, KAR S, ZHENG H T. Uncertain portfolio adjusting model using semi-absolute deviation[J]. Soft Computing, 2016, 20(2):717-725.
[6] MA B Q, XU X Y, SUN Y H, et al. Online search-based advertising strategy for e-business platform with the consideration of consumer search cost[J]. Cybernetics, 2017, 46(2):291-309.
[7] ESTRADA-JIMENEZ J, PARRA-ARNAU J, RODRIGUEZ-HOYOS A, et al. Online advertising:Analysis of privacy threats and protection approaches[J]. Computer Communications, 2017, 100:32-51.
[8] YUAN Y, ZENG D, ZHAO H M, et al. Analyzing positioning strategies in sponsored search auctions under CTR-based quality scoring[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(4):688-701.
[9] QIAO D D, ZHANG J, WEI Q, et al. Finding competitive keywords from query logs to enhance search engine advertising[J]. Information & Management, 2016, 54(4):531-543.
[10] D'ANNUNZIO A, RUSSO A. Net neutrality and internet fragmentation:The role of online advertising[J]. International Journal of Industrial Organization, 2015, 43:30-47.
[11] ZHU H B, ZHOU M C. Role-based collaboration and its kernel mechanisms[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C, 2006, 36(4):578-589.
[12] ZHU H B, ZHOU M C. Efficient role transfer based on Kuhn-Munkres algorithm[J]. IEEE Trans. on Systems, Man and Cybernetics, Part A:Systems and Humans, 2012, 42(2):491-496.
[13] ZHU H B, ZHOU M C. M-M role-transfer problems and their solutions[J]. IEEE Trans on Systems, Man and Cybernetics, Part A:Systems and Humans, 2009, 39(2):448-459.
[14] ZHU H B, ZHOU M C, ALKINS R. Group role assignment via a Kuhn-Munkres algorithm-based solution[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans, 2012, 42(3):739-750.
[15] KIREYEV P, PAUWELS K, GUPTA S. Do display ads influence search? Attribution and dynamics in online advertising[J]. International Journal of Research in Marketing, 2016, 33(3):475-490.
[1] 张巍, 仝茹, 吴诗珏, 王子奇, 滕少华. 基于KD45闭包的群组角色指派研究[J]. 广东工业大学学报, 2021, 38(04): 26-34.
[2] 陈思豆, 黄卓铨, 杨兴雨. 考虑限制性卖空的多期模糊投资组合优化模型[J]. 广东工业大学学报, 2021, 38(02): 39-47.
[3] 杨兴雨, 刘伟龙, 井明月, 张永. 基于模糊收益率的分散化投资组合调整策略[J]. 广东工业大学学报, 2020, 37(05): 13-21.
[4] 何锦安, 王蓓, 林家星. 基于活跃专家意见的在线投资组合策略[J]. 广东工业大学学报, 2020, 37(04): 59-64.
[5] 刘冬宁, 刘统武, 宋静静, 侯艳. 面向基站代维人员分工协作优化的多重指派研究[J]. 广东工业大学学报, 2018, 35(06): 69-76.
[6] 杨兴雨, 何锦安, 沈健华. 基于移动窗口的适应性在线投资组合策略[J]. 广东工业大学学报, 2018, 35(03): 61-66.
[7] 张巍, 张思勤, 宋静静, 滕少华, 刘艳. 基于E-CARGO的在线社区多对多好友推荐机制研究[J]. 广东工业大学学报, 2017, 34(03): 36-42.
[8] 朱倩南, 罗向龙, 陈颖. 基于改进网络度电煤耗评价指标的复杂汽轮机网络优化[J]. 广东工业大学学报, 2017, 34(02): 74-79.
[9] 滕少华, 刘翔. 基于E-CARGO的WSN成簇机制研究[J]. 广东工业大学学报, 2015, 32(04): 92-98.
[10] 王伟1,刘巍2. 不确定收益率下投资组合的可拓评价及变换[J]. 广东工业大学学报, 2012, 29(1): 83-87.
[11] 柴维斯; 刘锋; . 框架结构安定性分析的线性规划法及其应用[J]. 广东工业大学学报, 2001, 18(2): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!