广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (05): 62-67.doi: 10.12052/gdutxb.190097
许峻宁, 陈璟华, 荣泽成, 武宁
Xu Jun-ning, Chen Jing-hua, Rong Ze-cheng, Wu Ning
摘要: 提出一种将自适应理论、差分进化和蝙蝠优化算法结合的改进蝙蝠算法,解决电力系统配电网故障区段定位典型的含0-1离散约束条件及逻辑求值的最优化问题。将蝙蝠算法的全局寻优能力用于配电网故障区段的搜索和定位,在寻优过程中引入差分进化算法,并对算法的变异和交叉等操作进行自适应优化处理,解决传统蝙蝠算法容易陷入局部最优的缺陷。算例仿真结果表明,该算法能准确快速地定位配电网故障区段,并具有良好的容错性。
中图分类号:
[1] 何正友. 配电网分析及应用[M]. 北京: 科学出版社, 2014: 1-10. [2] 芦兴, 王瑞闯. 配电网故障定位方法研究[J]. 电网与清洁能源, 2013, 29(7): 26-30 LU X, WANG R C. Research on fault location method of distribution network [J]. Grid and Clean Energy, 2013, 29(7): 26-30 [3] 唐华, 王玮, 王英男, 等. 一种配电网故障区段定位的改进矩阵算法[J]. 科学技术与工程, 2014(11): 196-199 TANG H, WANG W, WANG Y N, et al. An improved matrix algorithm for fault section location in distribution network [J]. Science Technology and Engineering, 2014(11): 196-199 [4] 杜红卫, 孙雅明, 刘弘靖, 等. 基于遗传算法的配电网故障定位和隔离[J]. 电网技术, 2000, 24(5): 52-55 DU H W, SUN Y M, LIU H J, et al. Fault section diagnosis and isolation of distribution network based on genetic algorithm [J]. Grid Technology, 2000, 24(5): 52-55 [5] 孙雅明, 吕航. Petri网和冗余纠错技术结合的配电网故障区段定位新方法[J]. 中国电机工程学报, 2004, 24(10): 61-67 SUN Y M, LYU H. A new approach of the fault section locating for distribution system based on Petri nets in combination with redundant correcting technique [J]. Proceedings of the Chinese Journal of Electrical Engineering, 2004, 24(10): 61-67 [6] 刘文轩, 严凤, 田霖, 等. 基于LVQ神经网络的配电网故障定位方法[J]. 电力系统保护与控制, 2012, 40(5): 90-95 LIU W X, YAN F, TIAN L, et al. LVQ neural network approach for fault location of distribution network [J]. Power System Protection and Control, 2012, 40(5): 90-95 [7] 郭壮志, 吴杰康. 配电网故障区间定位的仿电磁学算法[J]. 中国电机工程学报, 2010, 30(13): 34-40 GUO Z Z, WU J K. Electromagnetism-like mechanism based fault section diagnosis for distribution network [J]. Proceedings of the Chinese Journal of Electrical Engineering, 2010, 30(13): 34-40 [8] 胡清, 张强. 基于改进二进制粒子群算法的配电网故障定位[J]. 南京工程学院学报(自然科学版), 2016(3): 77-81 HU Q, ZHANG Q. Fault location of distribution networks based on improved binary particle swarm optimization [J]. Journal of Nanjing Institute of Engineering, 2016(3): 77-81 [9] 邹玙琦, 李瑞. 基于最优个体蚁群算法的配电网故障定位研究[J]. 电气传动自动化, 2018, 40(1): 58-62 ZOU Y Q, LI R. Research on distribution network fault location based on optimal individual ant colony algorithm [J]. Electric Drive Automation, 2018, 40(1): 58-62 [10] 陈奎, 张云, 王洪寅, 等. 基于免疫算法的含分布式电源配电网的故障定位[J]. 电力系统保护与控制, 2017, 45(24): 57-62 CHEN K, ZHANG Y, WANG H Y, et al. Fault-section location of distribution network containing distributed generation based on immune algorithm [J]. Power System Protection and Control, 2017, 45(24): 57-62 [11] 陈辉, 周羽生. 基于改进和声算法的含DG配电网故障定位[J]. 电力科学与技术学报, 2018, 33(2): 123-128 CHEN H, ZHOU Y S. Fault location of distribution network with distributed generation based on an improved harmony algorithm [J]. Journal of Electric Power Science and Technology, 2018, 33(2): 123-128 [12] YANG X S. A new metaheuristic bat-inspired algorithm[C]//GONZALEZJ R. Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Berlin: Spring, 2010, 65-74. [13] 卫志农, 何桦, 郑玉平, 等. 配电网故障区间定位的高级遗传算法[J]. 中国电机工程学报, 2002, 22(4): 127-130 WEI Z N, HE H, ZHENG Y P, et al. A refined genetic algorithm for the fault sections location [J]. Proceedings of the CSEE, 2002, 22(4): 127-130 [14] 郭壮志, 陈波, 刘灿萍, 等. 潜在等式约束的配电网遗传算法故障定位[J]. 现代电力, 2007, 24(3): 24-28 GUO Z Z, CHEN B, LIU C P, et al. Genetic algorithm fault location of distribution network with latent equality constraint [J]. Modern Electric Power, 2007, 24(3): 24-28 [15] 郭壮志, 陈波, 刘灿萍, 等. 基于遗传算法的配电网故障定位[J]. 电网技术, 2007, 24(11): 88-92 GUO Z Z, CHEN B, LIU C P, et al. Distribution network fault location based on genetic algorithm [J]. Power Grid Technology, 2007, 24(11): 88-92 [16] 付家才, 陆青松. 基于蝙蝠算法的配电网故障区间定位[J]. 电力系统保护与控制, 2015, 43(16): 100-105 FU J C, LU Q S. Fault sections location of distribution network based on bat algorithm [J]. Power System Protection and Control, 2015, 43(16): 100-105 [17] 柳岩妮, 公茂法, 王来河, 等. 基于混沌优化蝙蝠算法的含分布式电源配电网故障区段定位[J]. 电力科学与工程, 2016, 32(8): 11-14 LIU Y N, GONG M F, WANG L H, et al. Location of fault section of distributed power distribution network based on chaos optimization bat algorithm [J]. Electric Power Science and Engineering, 2016, 32(8): 11-14 [18] 陈璟华, 邱明晋, 唐俊杰, 等. 基于改进差分进化和粒子群混合算法的电力系统最优潮流计算[J]. 广东工业大学学报, 2017, 34(5): 24-26 CHEN J H, QIU M J, TANG J J, et al. A hybrid algorithm based on improved differential evolution and particle swarm optimization for power system optimal power flow calculation [J]. Journal of Guangdong University of Technology, 2017, 34(5): 24-26 [19] 肖辉辉, 段艳明. 基于DE算法改进的蝙蝠算法的研究及应用[J]. 计算机仿真, 2014, 31(1): 272-277 XIAO H H, DUAN Y M. Research and application of improved bat algorithm based on DE algorithm [J]. Computer Simulation, 2014, 31(1): 272-277 |
[1] | 郑世明, 林泽鑫, 黄园芳, 李旺军, 彭显刚. 基于图模一体化技术的配电网可靠性评估[J]. 广东工业大学学报, 2022, 39(03): 63-69. |
[2] | 张兆轩, 陈璟华, 赵炳耀, 陈友鹏. 考虑集中充电站的电池换电站选址定容规划[J]. 广东工业大学学报, 2021, 38(05): 59-67. |
[3] | 荣泽成, 陈璟华, 郭壮志, 许俊宁, 陈友鹏. 基于非线性互补约束的含DG配电网故障区段定位方法[J]. 广东工业大学学报, 2020, 37(04): 51-58. |
[4] | 陈璟华, 邱明晋, 唐俊杰, 田明正, 谭耿锐. 基于改进差分进化和粒子群混合算法的电力系统最优潮流计算[J]. 广东工业大学学报, 2017, 34(05): 22-28. |
[5] | 许欢, 温洁嫦. 差分进化算法在物流配送路径优化中的应用[J]. 广东工业大学学报, 2013, 30(4): 61-64. |
|