广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 34-40,134.doi: 10.12052/gdutxb.210130
刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功
Liu Xue, Liu Zhong-ming, Xi Yue-bin, Wang Shou-juan, Kong Fan-gong
摘要: 超疏水涂层由于其广泛的应用前景, 近年来备受关注。然而, 利用天然聚合物制备超疏水材料和超疏水涂层仍然缺乏一种简单、经济的方法。本文通过取代反应制备了超疏水性木质素-PFTEOS粉体。由于该粉体与基体无关的特性和优异的超疏水性, 可用于各种基体制备超疏水性涂层。所制备的涂层疏水性极强, 水接触角最高可达169°, 同时具有良好的耐摩擦、耐酸碱、耐盐性能和较好的耐腐蚀性能:经砂纸摩擦循环20次或在1 mol/L HCl、0.20 mol/L NaOH和1 mol/L NaCl溶液中浸泡30 min后, 涂层仍保持超疏水性能, 且接触角大于150°。这种低成本、可降解和可扩展的木质素基涂层在不同领域具有巨大的应用潜力, 并为碱木质素的增值利用提供了一种简单的方法。
中图分类号:
[1] XU Q Y, BAI Y Y, ZHAO X, et al. Synthesis and characterization of an amphiphilic lignin-based cationic surfactant [J]. Industrial Crops and Products, 2021, 164: 113376. [2] YOU X Y, WANG X L, ZHANG H J, et al. Supertough lignin hydrogels with multienergy dissipative structures and ultrahigh antioxidative activities [J]. ACS Applied Materials and Interfaces, 2020, 12(35): 39892-39901. [3] ZHANG X, LIU W F, CAI J Q, et al. Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance [J]. Journal of Materials Chemistry A, 2019, 7(47): 26917-26926. [4] LIU W F, FANG C, CHEN F T, et al. Strong, reusable, and self-healing lignin-containing polyurea adhesives [J]. ChemSusChem, 2020, 13(17): 4691-4701. [5] MORENO A, MORSALI M, LIU J R, et al. Access to tough and transparent nanocomposites via Pickering emulsion polymerization using biocatalytic hybrid lignin nanoparticles as functional surfactants [J]. Green Chemistry, 2021, 23(8): 3001-3014. [6] THAKUR V K, THALUR M K, RAGHAVAN P, et al. Progress in green polymer composites from lignin for multifunctional applications: a review [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1072-1092. [7] WU B R, CUI X, JIANG H Y, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances [J]. Journal of Colloid Interface Science, 2021, 590: 301-310. [8] ZHANG D J, WU G Q, LI H, et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion [J]. Chemical Engineering Journal, 2021, 406: 126753. [9] LIU Z Y, ZHANG C Y, ZHANG X G, et al. Durable superhydrophobic PVDF/FEVE/GO@TiO2 composite coating with excellent anti-scaling and UV resistance properties [J]. Chemical Engineering Journal, 2021, 411: 128632. [10] XIAO L J, DENG M, ZENG W G, et al. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide [J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12354-12361. [11] PASSAUER L, HALLAS T, BÄUCKER E, et al. Biodegradation of hydrogels from oxyethylated lignins in model soils [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1955-1964. [12] GUO J Q, FANG W W, WELLE A, et al. Superhydrophobic and slippery lubricant-infused flexible transparent nanocellulose films by photoinduced thiol-ene functionalization [J]. ACS Applied Materials and Interfaces, 2016, 8(49): 34115-34122. [13] MONTEIL-RIVERA F, PHUONG M, YE M W, et al. Isolation and characterization of herbaceous lignins for applications in biomaterials [J]. Industrial Crops and Products, 2013, 41: 356-364. [14] YU M D, MISHRA D, CUI Z Y, et al. Recycling papermill waste lignin into recyclable and flowerlike composites for effective oil/water separation [J]. Composites Part B:Engineering, 2021, 216: 108884. [15] WANG H, XIONG F Q, TAN Y J, et al. Preparation and formation mechanism of covalent–noncovalent forces stabilizing lignin nanospheres and their application in superhydrophobic and carbon materials [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(10): 3811-3820. [16] ORIBAYO O, FENG X S, REMPEL G L, et al. Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery [J]. Chemical Engineering Journal, 2017, 323: 191-202. [17] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial [J]. Advanced materials, 2002, 14(24): 1857-1860. [18] LI D C, XU W F, CHENG H Y, et al. One-step thermochemical conversion of biomass waste into superhydrophobic carbon material by catalytic pyrolysis [J]. Global Challenges, 2020, 4(4): 1900085. [19] 张雨晴, 王玺傲, 王兴, 等. 木质素基超疏水涂层的制备与表征[J]. 中国造纸学报, 2019, 34(3): 18-23. ZHANG Y Q, WANG X A, WANG X, et al. Preparation and characterization of lignin-based superhydrophobic coatings [J]. Transactions of China Pulp and Paper, 2019, 34(3): 18-23. [20] 顾俐慧. 木质纤维素纳米纤丝基超疏水材料的制备与表征[D]. 南京: 南京林业大学, 2019. [21] YU C H, WANG F, FU S Y, et al. Laccase-assisted grafting of acrylic acid onto lignin for its recovery from wastewater [J]. Journal of Polymers and the Environment, 2016, 25(4): 1072-1079. [22] SANTOS R B, CAPANEMA E A, BALAKSHIN M Y, et al. Lignin structural variation in hardwood species [J]. Journal of Agricultural and Food Chemistry, 2012, 60(19): 4923-4930. [23] HUANG Y X, WANG Z X, HOU D Y, et al. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation [J]. Journal of Membrane Science, 2017, 531: 122-128. [24] GUO K, SHARMA A, TOH R J, et al. Porous silicon nanostructures as effective faradaic electrochemical sensing platforms [J]. Advanced Functional Materials, 2019, 29(24): 1809206. [25] ZHANG Y J, CHEN H L, WANG S J, et al. A new lamellar larch-based carbon material: fabrication, electrochemical characterization and supercapacitor applications [J]. Industrial Crops and Products, 2020, 148: 112306. [26] ZHANG Y J, CHEN H L, WANG S J, et al. Facile fabrication and structure control of SiO2/carbon via in situ doping from liquefied bio-based sawdust for supercapacitor applications [J]. Industrial Crops and Products, 2020, 151: 112490. [27] BAHRPAIMA K, FATEHI P. Synthesis and characterization of carboxyethylated lignosulfonate [J]. ChemSusChem, 2018, 11(17): 2967-2980. [28] ZONG E M, LIU X H, LIU L N, et al. Graft polymerization of acrylic monomers onto lignin with CaCl2–H2O2 as initiator: preparation, mechanism, characterization, and application in poly(lactic acid) [J]. ACS Sustainable Chemistry and Engineering, 2017, 6(1): 337-348. [29] YE H, ZHU L Q, LI W P, et al. Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles [J]. ACS Applied Materials and Interfaces, 2017, 9(1): 858-867. |
No related articles found! |
|