广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (05): 75-82.doi: 10.12052/gdutxb.220065

• • 上一篇    下一篇

FDI攻击下非线性多智能体系统分布式无模型自适应控制

曲燊1,2, 车伟伟1,2   

  1. 1. 青岛大学 自动化学院,山东 青岛 266071;
    2. 青岛大学 山东省工业控制技术重点实验室,山东 青岛 266071
  • 收稿日期:2022-03-20 发布日期:2022-07-18
  • 通信作者: 车伟伟(1980–),女,教授,博士,博士生导师,主要研究方向为网络控制系统、信息物理融合系统等,E-mail:cwwemail1980@126.com
  • 作者简介:曲燊(1995–),男,硕士研究生,主要研究方向为自适应控制等
  • 基金资助:
    国家自然科学基金资助项目(61873338);山东省泰山学者基金资助项目(tsqn201812052);山东省重点项目(ZR2020KF034)

Distributed Model-Free Adaptive Control for Nonlinear Multi-Agent Systems with FDI Attacks

Qu Shen1,2, Che Wei-wei1,2   

  1. 1. School of Automation, Qingdao University, Qingdao 266071, China;
    2. Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China
  • Received:2022-03-20 Published:2022-07-18

摘要: 为研究受到虚假数据注入攻击的单输入单输出非线性多智能体系统的分布式无模型自适应控制问题,提出了一种新的分布式动态线性化方法, 以获得非线性多智能体的等效线性数据模型。与现有多智能体的分布式无模型自适应控制在控制器设计中有所不同, 本文设计的控制器不需要网络拓扑结构的信息, 仅使用系统的输入输出数据。仿真算例验证了所提出的分布式无模型自适应控制算法可以实现多智能体系统的均方有界趋同控制。算法保证了多智能体系统在受到网络攻击时可以实现趋同控制目标。

关键词: 分布式紧格式动态线性化, 分布式无模型自适应控制, 多智能体系统, 虚假数据注入攻击

Abstract: The distributed model-free adaptive control (DMFAC) problem for single-input single-output nonlinear multi-agent systems (MASs) with false data injection attacks is studied. A new distributed dynamic linearization method is proposed to obtain an equivalent distributed compact form dynamic linearization data model for nonlinear MASs. Unlike the existing DMFAC results of MASs that the network topology is used in the controller design, the distributed model-free adaptive controller designed in this research uses the input/output data and the controller parameter does not depend on the eigenvalues of the Laplacian matrix. Simulation examples verify that the proposed distributed model-free adaptive control algorithm can acheive bounded consensus control of MASs in the mean square sense. The algorithm can ensure that the multi-agent system achieve the consensus control objective when it is under attacks.

Key words: distributed compact form dynamic linearization, distributed model-free adaptive control, multi-agent systems, FDI (false data injection) attacks

中图分类号: 

  • TP273
[1] TANG Y, XING X, KARIMI H R, et al. Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems [J]. IEEE Transactions on Industrial Electronics, 2015, 63(2): 1299-1307.
[2] DONG X, HUA Y, ZHOU Y, et al. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems [J]. IEEE Transactions on Automation Science and Engineering, 2018, 16(1): 229-240.
[3] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533.
[4] HE W, XU B, HAN Q L, et al. Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies [J]. IEEE Transactions on Cybernetics, 2019, 50(7): 2996-3008.
[5] DENG C, CHE W W, WU Z G. A dynamic periodic event-triggered approach to consensus of heterogeneous linear multiagent systems with time-varying communication delays [J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1812-1821.
[6] DENG C, CHE W W. Fault-tolerant fuzzy formation control for a class of nonlinear multiagent systems under directed and switching topology [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9): 5456-5465.
[7] JIN X Z, CHE W W, WU Z G, et al. Adaptive consensus and circuital implementation of a class of faulty multiagent systems [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 226-237.
[8] JIANG C, CHEN Z, GUO Y. Multi-robot formation control: a comparison between model-based and learning-based methods [J]. Journal of Control and Decision, 2020, 7(1): 90-108.
[9] DENG C, CHE W W, SHI P. Cooperative fault-tolerant output regulation for multiagent systems by distributed learning control approach [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(11): 4831-4841.
[10] YANG H, YE D. Observer-based fixed-time secure tracking consensus for networked high-order multiagent systems against dos attacks [J]. IEEE Transactions on Cybernetics, 2022, 52(4): 2018-2031.
[11] XU W, HO D W, LI L, et al. Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies [J]. IEEE Transactions on Cybernetics, 2015, 47(1): 212-223.
[12] YANG Y, LI Y, YUE D, et al. Distributed secure consensus control with event-triggering for multiagent systems under dos attacks [J]. IEEE Transactions on Cybernetics, 2021, 51(6): 2916-2928.
[13] AMINI A, ASIF A, MOHAMMADI A. Formation-containment control using dynamic event-triggering mechanism for multi-agent systems [J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1235-1248.
[14] ZUO S, YUE D. Resilient output formation containment of heterogeneous multigroup systems against unbounded attacks [J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1902-1910.
[15] DENG C, YANG G H. Distributed adaptive fault-tolerant containment control for a class of multi-agent systems with non-identical matching non-linear functions [J]. IET Control Theory & Applications, 2016, 10(3): 273-281.
[16] CHEN W, DING D, GE X, et al. $ {{{{H}}}}_{\infty}$ containment control of multiagent systems under event-triggered communication scheduling: the finite-horizon case [J]. IEEE Transactions on Cybernetics, 2018, 50(4): 1372-1382.
[17] WANG D, WANG Z, WANG Z, et al. Design of hybrid event-triggered containment controllers for homogeneous and heterogeneous multiagent systems [J]. IEEE Transactions on Cybernetics, 2021, 51(10): 4885-4896.
[18] WANG W, LONG J, WEN C, et al. Recent advances in distributed adaptive consensus control of uncertain nonlinear multi-agent systems [J]. Journal of Control and Decision, 2020, 7(1): 44-63.
[19] FATTAHI M, AFSHAR A. Controller-based observer design for distributed consensus of multi-agent systems with fault and delay [J]. Journal of Control and Decision, 2019, 6(4): 217-235.
[20] ZHANG H, YUE D, DOU C, et al. Data-driven distributed optimal consensus control for unknown multiagent systems with input-delay [J]. IEEE Transactions on Cybernetics, 2018, 49(6): 2095-2105.
[21] JIANG H, HE H. Data-driven distributed output consensus control for partially observable multiagent systems [J]. IEEE Transactions on Cybernetics, 2018, 49(3): 848-858.
[22] WANG S, DUAN J, SHI D, et al. A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning [J]. IEEE Transactions on Power Systems, 2020, 35(6): 4644-4654.
[23] HOU Z, JIN S. Model free adaptive control: theory and applications[M]. Boca Raton: CRC press, 2019.
[24] HOU Z, CHI R, GAO H. An overview of dynamic-linearization-based data-driven control and applications [J]. IEEE Transactions on Industrial Electronics, 2016, 64(5): 4076-4090.
[25] HOU Z, JIN S. A novel data-driven control approach for a class of discrete-time nonlinear systems [J]. IEEE Transactions on Control Systems Technology, 2010, 19(6): 1549-1558.
[26] HOU Z, JIN S. Data-driven model-free adaptive control for a class of mimo nonlinear discrete-time systems [J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2173-2188.
[27] HOU Z, XIONG S. On model-free adaptive control and its stability analysis [J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4555-4569.
[28] BU X, HOU Z, ZHANG H. Data-driven multiagent systems consensus tracking using model free adaptive control [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(5): 1514-1524.
[29] SONG W, FENG J, SUN S. Data-based output tracking formation control for heterogeneous mimo multiagent systems under switching topologies [J]. Neurocomputing, 2021, 422: 322-331.
[30] BU X, YU Q, HOU Z, et al. Model free adaptive iterative learning consensus tracking control for a class of nonlinear multiagent systems [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(4): 677-686.
[31] BU X, ZHU P, HOU Z, et al. Finite-time consensus for linear multi-agent systems using data-driven terminal ilc [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 67(10): 2029-2033.
[32] BU X, CUI L, HOU Z, et al. Formation control for a class of nonlinear multiagent systems using model-free adaptive iterative learning [J]. International Journal of Robust and Nonlinear Control, 2018, 28(4): 1402-1412.
[33] REN Y, HOU Z. Robust model-free adaptive iterative learning formation for unknown heterogeneous non-linear multi-agent systems [J]. IET Control Theory & Applications, 2019, 14(4): 654-663.
[34] ZHANG J, CHAI S, ZHANG B, et al. Relay cooperative tracking control of networked nonlinear multi-agent systems with communication delays: a data-driven method [J]. Neurocomputing, 2019, 363: 9-16.
[35] WANG Y, LI H, QIU X, et al. Consensus tracking for nonlinear multi-agent systems with unknown disturbance by using model free adaptive iterative learning control [J]. Applied Mathematics and Computation, 2020, 365: 124701.
[36] FENG J, SONG W, ZHANG H, et al. Data-driven robust iterative learning consensus tracking control for mimo multiagent systems under fixed and iteration-switching topologies [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1331-1344.
[37] DENG C, WEN C. Distributed resilient observer-based fault-tolerant control for heterogeneous multiagent systems under actuator faults and dos attacks [J]. IEEE Transactions on Control of Network Systems, 2020, 7(3): 1308-1318.
[38] FENG Z, HU G. Secure cooperative event-triggered control of linear multiagent systems under dos attacks [J]. IEEE Transactions on Control Systems Technology, 2019, 28(3): 741-752.
[39] HE W, MO Z, HAN Q L, et al. Secure impulsive synchronization in lipschitz-type multi-agent systems subject to deception attacks [J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1326-1334.
[40] HE W, GAO X, ZHONG W, et al. Secure impulsive synchronization control of multi-agent systems under deception attacks [J]. Information Sciences, 2018, 459: 354-368.
[41] MA Y S, CHE W W, DENG C, et al. Distributed model-free adaptive control for learning nonlinear mass under dos attacks[J/OL]. IEEE Transactions on Neural Networks and Learning Systems, 2021: 1-10. (2021-08-24) [2022-03-20]. https://doi.org/10.1109/TNNLS.2021.3104978.
[42] XU D, JIANG B, SHI P. A novel model-free adaptive control design for multivariable industrial processes [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6391-6398.
[1] 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55.
[2] 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43.
[3] 刘建华, 李佳慧, 刘小斌, 穆树娟, 董宏丽. 事件触发机制下的多速率多智能体系统非脆弱一致性控制[J]. 广东工业大学学报, 2022, 39(05): 102-111.
[4] 曾梓贤, 彭世国, 黄昱嘉, 谷志华, 冯万典. 两种不同脉冲欺骗攻击下随机多智能体系统的均方拟一致性[J]. 广东工业大学学报, 2022, 39(01): 71-77.
[5] 谢光强, 赵俊伟, 李杨, 许浩然. 基于多集群系统的车辆协同换道控制[J]. 广东工业大学学报, 2021, 38(05): 1-9.
[6] 张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(02): 86-90,96.
[7] 张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(02): 75-80.
[8] 罗贺富, 彭世国. 多时变时滞的多智能体系统的分布式编队控制[J]. 广东工业大学学报, 2017, 34(04): 89-96.
[9] 唐平; 杨宜民;. 多智能体系统与足球机器人系统体系结构研究[J]. 广东工业大学学报, 2001, 18(4): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!