摘要: 基于峭度的独立分量分析中,采用梯度法寻找代价函数的极值点时,搜索的方向对算法的收敛起着关键的作用,对Kuicnet算法中原来的梯度做一个倍数替换,得到一个新的ICA算法.新算法在迭代过程中适时对梯度方向作出调整,加快收敛速度.数值仿真说明了算法的有效性. 更多还原
[1] DOUGLAS S C,KUNG S Y.Kuicnet algorithms for blinddecon-volution. IEEE Workshop Neural Networks Sig-nal Process Cambridge . 1998[2] HYVARINEN A,OJA E.Independent Component Analy-sis:Algorithms and Application. Neural Networks Cen-tre . 2000[3] GEORGIE P,CICHOCKI A,AMARI S.On some exten-sions of the natural gradient algorithm. Third Interna-tional Conference on Independent Component Analysis andBlind Signal Separation(ICA 2001) . 2001[4] HYVARINEN A,KARHUNEN J,OJA E.Independentcomponent analysis. . 2001[5] JUTTEN C.Blind separation of sources. Signal Processing . 1991[6] COMON P.Independent component analysis,a new con-cept. Signal Processing . 1994[7] Lee T W.Independent component analysis using an extended infomax algorithm for mixed subgaussion and supergaussion sources. Neural Computation . 1999[8] Hyv rinen A.Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks . 1999 |
No related articles found! |
|