广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (3): 12-17.doi: 10.3969/j.issn.1007-7162.2012.03.002
徐维超
Xu Wei-chao
摘要: 相关系数是表征两个随机变量之间统计关系强弱的统计量,在几乎所有科学与技术领域都获得了广泛应用.本文以二元高斯分布为基本模型, 对文献中常见的5种相关系数的统计特性作相对全面的回顾与总结,并探讨了其适用的场合.具体结论如下:(1)当样本满足二元高斯分布时, 皮尔逊积距相关系数是最佳选择;(2)当样本中存在轻微的单调非线性畸变时, 序统计量相关系数比较适用;(3)当样本中存在严重的单调非线性畸变时, 斯皮尔曼秩次相关系数或肯德尔秩次相关系数是合适的选择;(4)当只有一路信号中存在单调非线性畸变时,基尼相关是最佳选择;(5)当样本中存在脉冲干扰时, 斯皮尔曼秩次相关系数或肯德尔秩次相关系数是合适的选择.
[1] Gibbons J D, Chakraborti S. Nonparametric Statistical Inference[M]. 3rd. New York: M Dekker, 1992.[2] Fisher R A. Statistical Methods, Experimental Design,and Scientific Inference[M]. New York: Oxford UniversityPress, 1990.[3] Fisher R A. On the ‘probable error’ of a coefficient of correlation deduced from a small sample[J]. Metron, 1921,1:332.[4] Fieller E C, Hartley H O, Pearson E S. Tests for rank correlation coefficients[J]. Biometrika, 1957,44(3/4):470481.[5] Kendall M, Gibbons J D. Rank Correlation Methods[M].5th. New York: Oxford University Press, 1990.[6] Fisher R. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population[J]. Biometrika, 1915, 10(4):507521.[7] Tumanski S. Principles of Electrical Measurement[M].New York: Taylor & Francis, 2006.[8] Stein D. Detection of random signals in Gaussian mixture noise[J]. IEEE Trans Inf Theory, 1995,41(6):17881801.[9] Chen R, Wang X, Liu J. Adaptive joint detection and decoding in flatfading channels via mixture Kalman filtering[J]. IEEE Trans Inf Theory, 2000, 46(6):20792094.[10] 〖ZK(#〗Reznic Z, Zamir R, Feder M. Joint sourcechannel coding of a Gaussian mixture source over the Gaussian broadcast channel[J]. IEEE Trans Inf Theory, 2002,48(3):776781.[11] Shevlyakov G L, Vilchevski N O. Robustness in Data Analysis: criteria and methods[M]. Modern probability and statistics. Utrecht: VSP, 2002.[12] Schechtman E, Yitzhaki S. A measure of association base on Ginis mean difference[J]. Commun StatistTheor Meth, 1987,16(1):207231.[13] Xu W, Chang C, Hung Y S, et al. Order Statistics Correlation Coefficient as a Novel Association Measurement With Applications to Biosignal Analysis[J]. IEEE Trans Signal Process, 2007, 55(12):55525563.[14] Xu W, Chang C, Hung Y S, et al. Asymptotic Properties of Order Statistics Correlation Coefficient in the Normal Cases[J]. IEEE Trans Signal Process, 2008,56(6):22392248.[15] Xu W, Hung Y S, Niranjan M, et al. Asymptotic Mean and Variance of Gini Correlation for Bivariate Normal Samples[J]. IEEE Trans Signal Process, 2010,58(2):522534.[16] Mari D D, Kotz S. Correlation and Dependence[M]. London:Imperial College Press, 2001.[17] Hoeffding W. A Class of Statistics with Asymptotically Normal Distribution[J]. Ann Math Stat, 1948,19(3):293325.[18] Daniels H E. The Relation Between Measures of Correlation in the Universe of Sample Permutations[J].Biometrika,1944, 33(2):129135.[19] Hotelling H. New light on the correlation coefficient and its transforms[J]. Journal of the Royal Statistical Society, Series B(Methodological), 1953, 15(2):193232.[20] Moran P A P. Rank Correlation and ProductMoment Correlation[J]. Biometrika, 1948, 35(1/2):203206.[21] Esscher F. On a method of determining correlation from the ranks of the variates[J]. Skand Aktuar, 1924,7:201219.[22] David F N, Mallows C L. The variance of Spearmans rho in normal samples[J]. Biometrika, 1961, 48(1/2):1928.[23] Stuart A, Ord J K. Kendalls Advanced Theory of Statistics: Volume 2 Classical Inference and Relationship[M].5th. London: Edward Arnold, 1991.[24] Xu W, Hou Y, Hung Y, et al. Comparison of Spearmans rho and Kendalls tau in Normal and Contaminated Normal Models[DB/OL]. (2010-12-31). http://arxiv.org/abs/1011.2009/. |
No related articles found! |
|