广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (06): 68-72,77.doi: 10.12052/gdutxb.160161

• 综合研究 • 上一篇    下一篇

基于混合纵横交叉算法的机组组合优化

马留洋, 孟安波, 殷豪   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2016-12-12 出版日期:2017-11-09 发布日期:2017-11-22
  • 作者简介:马留洋(1992-),男,硕士研究生,主要研究方向为电力系统经济调度与机组组合.
  • 基金资助:
    广东省科技计划项目(2016A010104016);广东电网公司科技项目(GDKJQQ20152066)

Unit Commitment Optimization Based on Hybrid Crisscross Optimization Algorithm

Ma Liu-yang, Meng An-bo, Yin Hao   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2016-12-12 Online:2017-11-09 Published:2017-11-22
  • Supported by:
     

摘要: 针对机组组合问题的特点,提出一种混合纵横交叉算法(crisscross optimization,CSO),分别用离散CSO和连续CSO优化机组的启停状态和机组的功率分配. 进化过程中,通过横向交叉在不同粒子的相同维进行交叉保证算法的全局收敛能力,纵向交叉在相同粒子的不同维进行交叉克服局部最优问题,两者通过一个竞争算子完美地结合,既加快了收敛速度,又能保证全局收敛能力. 引入启发式策略修正最小开停机时间、功率平衡等约束条件,有效地提高了求解的精度. 通过2个算例的仿真以及与其他算法的比较,验证了该算法的可行性和优越性.

关键词: 机组组合, 纵横交叉, 横向交叉, 纵向交叉, 启发式策略

Abstract: With regard to the characteristics of the unit commitment problem, a hybrid crisscross optimization algorithm (CSO) is proposed, discrete CSO and continuous CSO are used for the unit status scheduling and power economic dispatch, respectively. In the process of evolution, horizontal crossover performs crossover on the same dimension of different particles to guarantee the global convergence ability, and vertical crossover performs crossover on different dimensions of the same particle to overcome the local optimal convergence, and the perfect combination of the two crossovers by a competitive algorithm not only speeds up the convergence rate but also ensures the ability of the global constraints. The heuristic strategy is introduced to modify the constraint conditions, such as the minimum up and down time and the power balance, which can effectively improve the accuracy of the solution. The feasibility and superiority of the proposed algorithm are verified by the simulation of two examples and the comparison with other algorithms.

Key words: unit commitment, crisscross, horizontal crossover, vertical crossover, heuristic strategy

中图分类号: 

  • TM734
[1] 马留洋, 孟安波, 葛佳菲. 基于纵横交叉算法优化BP神经网络的风机齿轮箱故障诊断方法[J]. 广东工业大学学报, 2018, 35(02): 57-62.
[2] 王朗, 孟安波, 李锦焙, 魏明磊. 纵横交叉算法在梯级水库优化调度中的应用[J]. 广东工业大学学报, 2017, 34(04): 72-77.
[3] 陈璟华, 丁林军, 郭壮志, 粱丽丽, 李锦焙. 计及电动汽车规模化入网的电力系统机组组合优化[J]. 广东工业大学学报, 2017, 34(02): 63-68.
[4] 陈璟华, 梁丽丽, 丁林军, 周俊, 刘国祥. 计及风电场并网的机会约束规划的机组组合优化[J]. 广东工业大学学报, 2017, 34(01): 50-54,64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!