广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 90-94.doi: 10.12052/gdutxb.180015

• 综合研究 • 上一篇    下一篇

基于关联规则的客户行为建模与商品推荐研究

林穗, 郑志豪   

  1. 广东工业大学 计算机学院, 广东 广州 510006
  • 收稿日期:2018-01-24 出版日期:2018-05-09 发布日期:2018-05-24
  • 通信作者: 郑志豪(1992-),男,硕士研究生,主要研究方向为推荐系统、数据挖掘等.E-mail:694473924@qq.com E-mail:694473924@qq.com
  • 作者简介:林穗(1972-),女,副教授,主要研究方向为云计算、云存储、操作系统、数据挖掘等.
  • 基金资助:
    广州市科技计划项目(2017010160012)

A Research of a Recommender System Based on Customer Behavior Modeling by Mining Association Rules

Lin Sui, Zheng Zhi-hao   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-01-24 Online:2018-05-09 Published:2018-05-24
  • Supported by:
     

摘要: 随着我国电子商务事业的发展,传统的电子商务服务模式已经不能满足人们的购物需求,针对客户个性化推荐的研究具有一定的意义.本文将Apriori算法进行改进,利用改进的Apriori算法对用户兴趣信息进行挖掘,挖掘用户之间的关联性,建立用户行为模型,为用户推荐其感兴趣的商品,提升用户的购买体验.实验表明,改进的算法提高了推荐的精度和速度.

关键词: 电子商务, 个性化推荐, Apriori算法改进, 用户行为建模

Abstract: With the development of e-commerce in China, the traditional e-business service mode can no longer meet people's shopping needs. Personalized recommendation for customers is a problem worthy of study. In this research, the improvement of Apriori algorithm is used to mine user interest information and the user correlation. Then, a user behavior model is set up, and can recommend the goods of interest, and improve the user's purchase experience. Experiments show that the improved Apriori algorithm improves the accuracy and speed of the recommendation system.

Key words: E-commerce, personalized recommendation, the improvement of Apriori algorithm, user behavior modeling

中图分类号: 

  • TP311
[1] 刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19(1):1-15.LIU J G, ZHOU T, WANG B H. Research progress of personalized recommendation[J]. Progress in Natural Science, 2009, 19(1):1-15.
[2] INGERSOLL G. Introducing apache mahout:scalable, commercial-friendly machine learning for building intelligent applications[J]. IBM, 2009,
[3] ESTEVES R M, RONG C. Using mahout for clustering wikipedia's latest articles:a comparison between K-means and fuzzy c-means in the cloud[C]//2011 IEEE Third International Conference on Cloud Computing Technology and Science. Athens:IEEE, 2011:565-569.
[4] SHVACHKO K, KUANG H, RADIA S, et al. The hadoop distributed file system[C]//2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). Incline Village:IEEE Computer Society, 2010:1-10.
[5] TAYLOR R C. An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics[J]. BMC Bioinformatics, 2010, 11(S12):S1
[6] ZHANG Z Q, QIAN S J. The research of e-commerce recommendation system based on collaborative filtering technology[C]//Advances in Computer Science and Information Engineering. Berlin:Springer, 2012:507-512.
[7] TYAGI S, BHARADWAJ K K. A hybrid knowledge-based approach to collaborative filtering for improved recommendations[J]. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2014, 18(2):121-133.
[8] 伍育红. 聚类算法综述[J]. 计算机科学, 2015, 42(6A):491-499.WU Y H. General over view on clustering[J]. Computer Science, 2015, 42(6A):491-499.
[9] 张玉洁, 杜雨露, 孟祥武. 组推荐系统及其应用研究[J]. 计算机学报, 2016, 39(4):745-764.ZHANG Y J, DU Y L, MENG X W. Research on group recommender systems and their applicatIons[J]. Chinese Journal of Computers, 2016, 39(4):745-764.
[10] 胡惠成, 陈平华. 一种融合隐式信任关系的推荐算法[J]. 广东工业大学学报, 2017, 34(3):43-48.HU H C, CHEN P H. Research on implicit trust relationship aware recommendation algorithm[J]. Journal of Guangdong University of Technology, 2017, 34(3):43-48.
[11] 胡新明. 基于商品属性的电子商务推荐系统研究[D]. 武汉:华中科技大学, 2012.
[12] 王勇, 易庭. 基于距离衰减和评分趋势改进的协同推荐算法[J]. 广东工业大学学报, 2015, 32(2):38-42.WANG Y, YI T. A distance decay and score trends impr- oved collaborative recommendation algorithm[J]. Journal of Guangdong University of Technology, 2015, 32(2):38-42.
[13] 应毅, 刘亚军, 陈诚. 基于云计算技术的个性化推荐系统[J]. 计算机工程与应用, 2015, 51(13):111-117.YING Y, LIU Y J, CHEN C. Personalization recommender system based on cloud-computing technology[J]. Computer Engineering and Applications, 2015, 51(13):111-117.
[14] 王洁, 汤小春. 基于社区网络内容的个性化推荐算法研究[J]. 计算机应用研究, 2011, 28(4):1248-1250.WANG J, TANG X C. Personalized recommendation algorithm research based on content in social network[J]. Application Research of Computers, 2011, 28(4):1248-1250.
[15] 杨超, 艾聪聪, 蒋斌, 等. 一种融合人口统计属性的协同过滤算法[J]. 小型微型计算机系统, 2015, 36(4):782-786.YANG C, AI C C, JIANG B, et al. Demographic attribute-based collaborative filtering algorithm[J]. Journal of Chinese Computer Systems, 2015, 36(4):782-786.
[16] 刘丽娟. 改进的Apriori算法的研究及应用[J]. 计算机工程与设计, 2017, 38(12):3324-3328.LIU L J. Research and application of improved Apriori algorithm[J]. Computer Engineering and Design,2017, 38(12):3324-3328.
[17] 张万山, 肖瑶, 梁俊杰, 等. 基于主题聚类的Web资源个性化推荐研究[J]. 微电子学与计算机, 2015,(4):35-39.ZHANG W S, XIAO Y, LIANG J J, et al. Personalized recomm-endation of web resources rased on topic clustering[J]. Microellectronics & Computer, 2015,(4):35-39.
[1] 陈军, 谢卫红, 陈扬森. 国内移动电子商务领域前沿动态研究[J]. 广东工业大学学报, 2017, 34(05): 73-79.
[2] 徐少强; 凌捷; 李红蕾; . 电子商务安全传输系统研究[J]. 广东工业大学学报, 2005, 22(1): 67-71.
[3] 龙德应; . 基于Web服务/XML的电子商务体系及数据集成研究[J]. 广东工业大学学报, 2003, 20(1): 32-39.
[4] 曾孜; . 企业电子商务系统的安全性分析[J]. 广东工业大学学报, 2001, 18(3): 22-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!