广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (03): 90-94.doi: 10.12052/gdutxb.180015
林穗, 郑志豪
Lin Sui, Zheng Zhi-hao
摘要: 随着我国电子商务事业的发展,传统的电子商务服务模式已经不能满足人们的购物需求,针对客户个性化推荐的研究具有一定的意义.本文将Apriori算法进行改进,利用改进的Apriori算法对用户兴趣信息进行挖掘,挖掘用户之间的关联性,建立用户行为模型,为用户推荐其感兴趣的商品,提升用户的购买体验.实验表明,改进的算法提高了推荐的精度和速度.
中图分类号:
[1] 刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2009, 19(1):1-15.LIU J G, ZHOU T, WANG B H. Research progress of personalized recommendation[J]. Progress in Natural Science, 2009, 19(1):1-15. [2] INGERSOLL G. Introducing apache mahout:scalable, commercial-friendly machine learning for building intelligent applications[J]. IBM, 2009, [3] ESTEVES R M, RONG C. Using mahout for clustering wikipedia's latest articles:a comparison between K-means and fuzzy c-means in the cloud[C]//2011 IEEE Third International Conference on Cloud Computing Technology and Science. Athens:IEEE, 2011:565-569. [4] SHVACHKO K, KUANG H, RADIA S, et al. The hadoop distributed file system[C]//2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). Incline Village:IEEE Computer Society, 2010:1-10. [5] TAYLOR R C. An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics[J]. BMC Bioinformatics, 2010, 11(S12):S1 [6] ZHANG Z Q, QIAN S J. The research of e-commerce recommendation system based on collaborative filtering technology[C]//Advances in Computer Science and Information Engineering. Berlin:Springer, 2012:507-512. [7] TYAGI S, BHARADWAJ K K. A hybrid knowledge-based approach to collaborative filtering for improved recommendations[J]. International Journal of Knowledge-Based and Intelligent Engineering Systems, 2014, 18(2):121-133. [8] 伍育红. 聚类算法综述[J]. 计算机科学, 2015, 42(6A):491-499.WU Y H. General over view on clustering[J]. Computer Science, 2015, 42(6A):491-499. [9] 张玉洁, 杜雨露, 孟祥武. 组推荐系统及其应用研究[J]. 计算机学报, 2016, 39(4):745-764.ZHANG Y J, DU Y L, MENG X W. Research on group recommender systems and their applicatIons[J]. Chinese Journal of Computers, 2016, 39(4):745-764. [10] 胡惠成, 陈平华. 一种融合隐式信任关系的推荐算法[J]. 广东工业大学学报, 2017, 34(3):43-48.HU H C, CHEN P H. Research on implicit trust relationship aware recommendation algorithm[J]. Journal of Guangdong University of Technology, 2017, 34(3):43-48. [11] 胡新明. 基于商品属性的电子商务推荐系统研究[D]. 武汉:华中科技大学, 2012. [12] 王勇, 易庭. 基于距离衰减和评分趋势改进的协同推荐算法[J]. 广东工业大学学报, 2015, 32(2):38-42.WANG Y, YI T. A distance decay and score trends impr- oved collaborative recommendation algorithm[J]. Journal of Guangdong University of Technology, 2015, 32(2):38-42. [13] 应毅, 刘亚军, 陈诚. 基于云计算技术的个性化推荐系统[J]. 计算机工程与应用, 2015, 51(13):111-117.YING Y, LIU Y J, CHEN C. Personalization recommender system based on cloud-computing technology[J]. Computer Engineering and Applications, 2015, 51(13):111-117. [14] 王洁, 汤小春. 基于社区网络内容的个性化推荐算法研究[J]. 计算机应用研究, 2011, 28(4):1248-1250.WANG J, TANG X C. Personalized recommendation algorithm research based on content in social network[J]. Application Research of Computers, 2011, 28(4):1248-1250. [15] 杨超, 艾聪聪, 蒋斌, 等. 一种融合人口统计属性的协同过滤算法[J]. 小型微型计算机系统, 2015, 36(4):782-786.YANG C, AI C C, JIANG B, et al. Demographic attribute-based collaborative filtering algorithm[J]. Journal of Chinese Computer Systems, 2015, 36(4):782-786. [16] 刘丽娟. 改进的Apriori算法的研究及应用[J]. 计算机工程与设计, 2017, 38(12):3324-3328.LIU L J. Research and application of improved Apriori algorithm[J]. Computer Engineering and Design,2017, 38(12):3324-3328. [17] 张万山, 肖瑶, 梁俊杰, 等. 基于主题聚类的Web资源个性化推荐研究[J]. 微电子学与计算机, 2015,(4):35-39.ZHANG W S, XIAO Y, LIANG J J, et al. Personalized recomm-endation of web resources rased on topic clustering[J]. Microellectronics & Computer, 2015,(4):35-39. |
[1] | 陈军, 谢卫红, 陈扬森. 国内移动电子商务领域前沿动态研究[J]. 广东工业大学学报, 2017, 34(05): 73-79. |
[2] | 徐少强; 凌捷; 李红蕾; . 电子商务安全传输系统研究[J]. 广东工业大学学报, 2005, 22(1): 67-71. |
[3] | 龙德应; . 基于Web服务/XML的电子商务体系及数据集成研究[J]. 广东工业大学学报, 2003, 20(1): 32-39. |
[4] | 曾孜; . 企业电子商务系统的安全性分析[J]. 广东工业大学学报, 2001, 18(3): 22-25. |
|