广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (05): 75-79.doi: 10.12052/gdutxb.180054

• 综合研究 • 上一篇    下一篇

不同长度α-MnO2纳米线的可控合成及其催化燃烧性能的研究

廖秀红, 蒋勇, 简国坤, 程高, 孙明   

  1. 广东工业大学 轻工化工学院, 广东 广州 510006
  • 收稿日期:2018-03-19 出版日期:2018-07-10 发布日期:2018-09-11
  • 通信作者: 孙明(1978-),男,副教授,博士,主要研究方向为纳米材料及其应用.E-mail:sunmgz@gdut.edu.cn E-mail:sunmgz@gdut.edu.cn
  • 作者简介:廖秀红(1991-),女,硕士研究生,主要研究方向为过渡金属氧化物的控制合成及性能.
  • 基金资助:
    广东省教育厅特色创新项目(2015KTSCX027);广东省自然科学基金资助项目(2018A030310563)

Controllable Synthesis of α-MnO2 Nanowire with Different Length and Its Catalytic Combustion Activity

Liao Xiu-hong, Jiang Yong, Jian Guo-kun, Cheng Gao, Sun Ming   

  1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2018-03-19 Online:2018-07-10 Published:2018-09-11

摘要: 以高锰酸钾为锰源和氧化剂,通过控制乙酸的用量在水热条件可控合成出具有不同长度的α-MnO2纳米线,采用X射线衍射(XRD)、扫描电镜(SME)、透射电镜(TEM)、拉曼光谱(Raman)、程序升温还原(H2-TPR)等技术对制备的材料的结构以及氧化还原能力进行了表征,并考察了α-MnO2纳米线长度对二甲醚催化燃烧性能的影响.结果表明,α-MnO2纳米线的长度受乙酸含量/酸度的影响,随着乙酸含量增加而减小.纳米线长度还影响α-MnO2的氧化还原性能和二甲醚催化燃烧性能.其中采用1.4 ml乙酸制得的具有中等长度(4~8 μm)的α-MnO2纳米线,催化性能最好,其起燃温度为167℃,完全燃烧温度为240℃,20 h的短期寿命测试表明,该样品具有较好的稳定性.

关键词: MnO2纳米线, 可控合成, 催化燃烧

Abstract: Using KMnO4 as the source of Mn and the oxidant, the α-MnO2 nanowires with different length were synthesized by controlling the amount of CH3COOH under hydrothermal conditions. The structure and redox properties of the α-MnO2 were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and hydrogen temperature-programmed reduction (H2-TPR) techniques. The catalytic activity of the α-MnO2 in dimethyl ether (DME) combustion was also investigated. The results indicated that the length of α-MnO2 nanowire was determined by the amount of CH3COOH, and the length shortened with the rise of the CH3COOH concentration. The length of the α-MnO2 nanowire affected its redox property and catalytic combustion activity. The α-MnO2 nanowire with the moderate length of 4-8 μm synthesized using 1.4 ml of CH3COOH showed the best catalytic activity with the initial conversion temperature of 167℃ and the total conversion temperature of 240℃ for DME combustion. The time-on-stream 20 h-test shows that the prepared α-MnO2 nanowire has relatively good stability.

Key words: manganese dioxide nanowire, controllable synthesis, catalytic combustion

中图分类号: 

  • O614.7
[1] ?SHEN X, DING Y, LIU J, et al. Synthesis, characterization, and catalytic applications of manganese oxide octahedral molecular sieve (OMS) nanowires with a 2×3 tunnel structure[J]. Chem Mater, 2004, 16(25):5327-5335
[2] XU H, YAN N, QU Z, et al. Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications:A critical review[J]. Environ Sci Technol, 2017, 51(16):8879-8892
[3] HOUSEL L M, WANG L, ABRAHAM A, et al. Investigation of α-MnO2 tunneled structures as model cation hosts for energy storage[J]. Acc Chem Res, 2018, 51(3):575-582
[4] 符志伟, 程高, 林婷, 等. 二氧化锰制备及催化燃烧甲苯性能研究[J]. 广东工业大学学报, 2016, 33(2):85-90 FU Z W, CEHNG G, LIN T, et al. The preparation of MnO2 and application in catalytic combustion of toluene[J]. Journal of Guangdong University of Technology, 2016, 33(2):85-90
[5] CHENG G, YU L, HE B, et al. Catalytic combustion of dimethyl ether over α-MnO2 nanostructures with different morphologies[J]. Appl Surf Sci., 2017, 409:223-231
[6] LONG Y, HUI J F, WANG P P, et al. α-MnO2 nanowires as building blocks for the construction of 3D macro-assemblies[J]. Chem Commun, 2012, 48(47):5925-5927
[7] LIU J, MARGEAT O, DACHRAOUI W, et al. Gram-scale synthesis of ultrathin tungsten oxide nanowires and their aspect ratio-dependent photocatalytic activity[J]. Adv Funct Mater, 2014, 24(38):6029-6037
[8] TANG H, ZHOU Z, SODANO H A. Relationship between BaTiO3 Nanowire aspect ratio and the dielectric permittivity of nanocomposites[J]. ACS Appl Mater Interfaces, 2014, 6(8):5450-5455
[9] WANG X, LI Y. Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires[J]. J Am Chem Soc, 2002, 124(12):2880-2881
[10] GAO Y, WANG Z, WAN J, et al. A facile route to synthesize uniform single-crystalline-MnO2 nanowires[J]. J Cryst Growth, 2005, 279(3-4):415-419
[11] YUAN J, LIU X, AKBULUT O, et al. Superwetting nanowire membranes for selective absorption[J]. Nature Nanotechnology, 2008, 3(6):332-336
[12] LAN B, YU L, LIN T, et al. Multifunctional free-standing membrane from the self-assembly of ultralong MnO2 nanowires[J]. ACS Appl Mater Interfaces, 2013, 5(15):7458-7464
[13] VOLNINA E A, KIPNIS M A, KHADZHIEV S N. Catalytic chemistry of dimethyl ether (review)[J]. Pet Chem, 2017, 57(5):353-373
[14] GAO T, FJELLVÅG H, NORBY P. A comparison study on Raman scattering properties of α-and β-MnO2[J]. Anal Chim Acta, 2009, 648(2):235-239
[15] VILLEGAS J C, GARCES L J, GOMEZ S, et al. Particle size control of cryptomelane nanomaterials by use of H2O2 in acidic conditions[J]. Chem Mater, 2005, 17(7):1910-1918
[16] SUN M, LAN B, LIN T, et al. Controlled synthesis of nanostructured manganese oxide:crystalline evolution and catalytic activities[J]. CrystEngComm, 2013, 15(35):7010-7018
[17] WANG J, LI J, ZHANG P, et al. Understanding the "seesaw effect" of interlayered K+ with different structure in manganese oxides for the enhanced formaldehyde oxidation[J]. Appl Catal, B, 2018, 224:863-870
[1] 符志伟,程高,林婷,孙明,余林. 二氧化锰制备及催化燃烧甲苯性能研究[J]. 广东工业大学学报, 2016, 33(02): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!