广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (01): 75-80.doi: 10.12052/gdutxb.180064
黄穗超1, 胡正发1,2, 张伟1
Huang Sui-chao1, Hu Zheng-fa1,2, Zhang Wei1
摘要: 采用中温固相反应法合成了发光材料LiY (MoO4)2:Yb3+/Er3+,材料具有明显的上转换发光特性.通过X射线衍射仪、荧光光谱对荧光粉的晶体结构以及发光学特性进行了研究.在980 nm激光的激发下,LiY (MoO4)2:Yb3+/Er3+在500~575 nm波长范围内出现很强的绿色发射带,主要是源自Er3+离子2H11/2/4S3/2→4I15/2的能级辐射跃迁.研究发现其在不同功率的激发下能实现光色调控.在298~513 K温度范围内,通过测量其在2H11/2(1)→4I15/2和4S3/2(1)→4I15/2处的荧光强度比,数据拟合图像表明2H11/2(1)/4S3/2(1)热耦合能级上的布居数遵循玻尔兹曼分布,相对灵敏度在298 K达到最大值1.785% K-1,绝对灵敏度在约473 K达到最大值263.20×10-4 K-1,并且热能级2H11/2(1)/4S3/2(1)之间的能隙ΔE为756.71±27.48 cm-1.基于以上分析,LiY (MoO4)2:Yb3+/Er3+荧光粉在温度传感器上具有很好的前景.
中图分类号:
[1] MARCINIAK Ł, BEDNARKIEWICZ A, STEFANSKI M, et al. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer[J]. Physical Chemistry Chemical Physics, 2015, 17(37):24315-24321 [2] ZHOU J, LIU Z, LI F. Upconversion nanophosphors for small-animal imaging[J]. Chemical Society Reviews, 2012, 41(3):1323-1349 [3] WANG F, BANERJEE D, LIU Y, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. Analyst, 2010, 135(8):1839-1854 [4] LI J, LI T, SUO H, et al. Up-conversion emission color tuning in NaLa(MoO4)2:Nd3+/Yb3+/Ho3+, excited at 808 nm[J]. Ceramics International, 2017, 43(8):6333-6339 [5] VIJAYA N, BABU P, VENKATRAMU V, et al. Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors[J]. Sensors & Actuators B Chemical, 2013, 186(43):156-164 [6] PANDEY A, SOM S, KUMAR V, et al. Enhanced upconversion and temperature sensing study of Er3+-Yb3+, codoped tungsten-tellurite glass[J]. Sensors & Actuators B Chemical, 2014, 202(4):1305-1312 [7] KLIER D T, KUMKE M U. Upconversion luminescence properties of NaYF4:Yb:Er nanoparticles codoped with Gd3+[J]. Journal of Physical Chemistry C, 2016, 119(6):3363-3373 [8] WAWRZYNCZYK D, BEDNARKIEWICZ A, NYK M, et al. Neodymium(iii) doped fluoride nanoparticles as non-contact optical temperature sensors[J]. Nanoscale, 2012, 4(22):6959-6961 [9] KUSAMA H, SOVERS O J, YOSHIOKA T. Line shift method for phosphor temperature measurements[J]. Japanese Journal of Applied Physics, 1976, 15(12):2349-2358 [10] RAI V K. Temperature sensors and optical sensors[J]. Applied Physics B, 2007, 88(2):297-303 [11] WEI T, SHI Y, XIE Y F, et al. High temperature-sensing performance of Er-and Yb-codoped tungsten bronze oxides based on frequency up-conversion luminescence[J]. Materials Research Bulletin, 2017, 88:206-213 [12] KOLITSCH U. The crystal structures of phenacite-type Li2(MoO4), and scheelite-type LiY(MoO4)2 and LiNd(MoO4)2:zeitschrift für kristallographie-crystalline materials[J]. Zeitschrift Für Kristallographie/international Journal for Structural Physical & Chemical Aspects of Crystalline Materials, 2001, 216(8/2001):449-454 [13] YANG Y M, MI C. Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La-2(WO4)(3):Yb3+, Er3+[C]//Proceedings of SPIE-The International Society for Optical Engineering,[s.n.]:[s.l.], 2013, 9044. [14] LI T, GUO C, ZHOU S, et al. Highly sensitive optical thermometry of Yb3+-Er3+ co-doped AgLa(MoO4)2 green upconversion phosphor[J]. Journal of the American Ceramic Society, 2015, 98(9):2812-2816 [15] HE D, GUO C, ZHOU S, et al. Synthesis and thermometric properties of shuttle-like Er3+/Yb3+ Co-doped NaLa(MoO4)2 microstructures[J]. Crystengcomm, 2015, 17(40):7745-7753 [16] PANDEY A, RAI V K, KUMAR V, et al. Upconversion based temperature sensing ability of Er3+-Yb3+ codoped SrWO4an optical heating phosphor[J]. Sensors & Actuators B Chemical, 2015, 209:352-358 [17] LIAO J S, NIE L, WANG Q, et al. NaGd(WO4)2:Yb3+/Er3+ phosphors:hydrothermal synthesis, optical spectroscopy and green upconverted temperature sensing behavior[J]. Rsc Advances, 2016, 6(42):35152-35159 [18] LU H, MENG R, HAO H, et al. Stark sublevels of Er3+-Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer[J]. Rsc Advances, 2016, 6(62):57667-57671 |
[1] | 方志雄, 易双萍, 周一轩, 赵韦人. 双钙钛矿结构Sr2GdSbO6:Eu3+荧光粉的制备与表征[J]. 广东工业大学学报, 2023, 40(02): 88-94. |
[2] | 廖子锋, 赵韦人, 黄浩, 宋静周. 高浓度锰掺杂Ca14Zn6Al10O35荧光粉的近红外第二窗口发光[J]. 广东工业大学学报, 2021, 38(01): 97-103,110. |
[3] | 鲁重瑞, 赵韦人, 廖子锋, 宋静周, 夏梦龙, 杨焕鑫. 铕掺杂NASICON结构红色荧光粉制备和发光性能[J]. 广东工业大学学报, 2020, 37(01): 27-33. |
[4] | 何景祺, 罗莉. 新型近紫外激发单一基质荧光粉Sr2V2O7:Ln(Ln=Eu3+, Dy3+, Sm3+, Tb3+)的研究[J]. 广东工业大学学报, 2019, 36(01): 68-74. |
[5] | 黄保裕, 罗莉, 王银海, 韩春龙. Ba3Y(PO4)3:Sm3+, Eu3+红光荧光粉的发光和能量传递的研究[J]. 广东工业大学学报, 2017, 34(02): 40-47. |
[6] | 方夏冰, 赵韦人, 邓玲玲, 朱燕娟, 易双萍. 低温空气中Ba3-xP4O13:xEu2+黄白色长余辉荧光粉的制备和发光性能研究[J]. 广东工业大学学报, 2014, 31(2): 121-127. |
|