广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (01): 87-94.doi: 10.12052/gdutxb.190102

• 综合研究 • 上一篇    下一篇

多旋翼无人机自主精准降落的控制系统研究

曾振华1, 郑汇峰1, 祝玉杰1, 罗志勇2   

  1. 1. 广东工业大学 自动化学院, 广东 广州 510006;
    2. 广州优飞信息科技有限公司, 广东 广州 510006
  • 收稿日期:2019-08-09 出版日期:2020-01-25 发布日期:2019-12-31
  • 作者简介:曾振华(1994-),男,硕士研究生,主要研究方向为智能优化算法、无人机控制系统,E-mail:2930630089@qq.com
  • 基金资助:
    广东省自然科学基金资助项目(2018A0303130137);广东省哲学社会科学规划学科共建项目(GD18XJY05);广东省高性能计算重点实验室开放项目(TH1528);深圳市南山区科技计划项目(2018050)

A Research on Control System of Multi-rotor UAV Self-precision Landing

Zeng Zhen-hua1, Zheng Hui-feng1, Zhu Yu-Jie1, Luo Zhi-Yong2   

  1. 1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou Ufly Information Technology Co., Ltd., Guangzhou 510006, China
  • Received:2019-08-09 Online:2020-01-25 Published:2019-12-31

摘要: 针对多旋翼无人机降落时采用位置控制方式存在位置振荡和速度超调现象的问题,本文采用速度控制的方式进行降落,构建了一个完整的精准降落闭环速度控制系统。首先建立无人机精准降落速度控制系统的总体框架;然后进行无人机降落时多个坐标系之间的转换;再设计外环速度的"比例-积分-微分"(Proportion-Integral-Derivative,PID)控制系统和模糊自适应速度PID控制系统;最后进行2种控制系统的性能测试和对比实验。结果表明,无人机在这2种控制系统下均能成功降落到地面靶标上,且模糊自适应速度PID控制系统降落精度更高,达到了0.13 m以内。因此多旋翼无人机采用模糊自适应速度PID控制系统可实现自主精准降落。

关键词: 多旋翼无人机, 模糊自适应, PID控制, 闭环, 精准降落

Abstract: In view of the problem of positional oscillation and speed overshoot in the position control mode of multi-rotor UAV landing, the speed control method is adopted to land and a complete closed-loop speed control system constructed for precise landing. Firstly, the overall framework of UAV precise landing speed control system is established; secondly, the coordinate system of UAV landing and the transformation between coordinate systems are constructed; then, the outer-loop speed PID(Proportion-Integral-Derivative) control system and the fuzzy adaptive speed PID control system are designed; and finally, the performance tests and comparative experiments of the two control systems are carried out. The results show that the UAV can successfully land on the ground target under these two control systems, and the fuzzy adaptive speed PID control system has a higher landing accuracy, which is less than 0.13 meters. It can be seen that the multi-rotor UAV has realized the autonomous precise landing by adopting the fuzzy adaptive speed PID control system.

Key words: multi-rotor UAV, fuzzy adaptive, PID control, closed-loop, precise landing

中图分类号: 

  • V249.122
[1] 毕庆生. 基于Onboard SDK的无人机自主飞行控制技术研究[D]. 西安:西安石油大学, 2017.
[2] 杜军特, 李扬. 参数自整定模糊PID控制方法及其在漆包机中的应用[J]. 广东工业大学学报, 2014, 31(2):58-63
DU J T, LI Y. Parameter self-tuning fuzzy PID control method and its application in enamelling machine[J]. Journal of Guangdong University of Technology, 2014, 31(2):58-63
[3] ZHANG X, LIU C, LIU F. Attitude control of 3-DOF helicopter based on iterative learning Control[C]//Proceedings of the 10th World Congress on intelligent Control and Automation. Beijing:IEEE, 2012:128-132.
[4] WANG C L, CHEN Z Q, SUN Q L, et al. Design of PID and ADRC based quadrotor helicopter control system[C]//2016 Chinese Control and Decision Conference (CCDC). Yinchuan:IEEE, 2016:5860-5865.
[5] JIN C, ZHU M, SUN L, et al. Relative motion odeling and control for a quadrotor landing on an unmanned vessel[C]//AIAA Guidance, Navigation AIAA, and Control Conference. Grapevine, Texas:2017:1522.
[6] MOU Y, ZHANG Q, LIU S, et al. The flight control of micro quad-rotor UAV based on PID[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Hubei:IEEE, 2016:353-356.
[7] YANG S, WANG. Z S. Quad-rotor UAV control method based on PID control law[C]//2017 International Conference on Computer Network, Electronic and Automation (ICCNEA). Xi'an:IEEE, 2017:418-421.
[8] 冯培晏. 四旋翼无人机建模与PID控制器设计[J]. 工业设计, 2018(6):135-137
FENG P Y. Modeling and PID controller design of four-rotor UAV[J]. Industrial Design, 2018(6):135-137
[9] 张舸, 伊国兴, 高翔. 基于视觉导航的旋翼无人机自主降落系统[J]. 传感器与微系统, 2018, 37(9):77-80
ZHANG G, YI G X, GAO X. Autonomous landing system of rotor UAV based on visual navigation[J]. Sensors and Microsystems, 2018, 37(9):77-80
[10] 张咪, 赵勇, 布树辉, 等. 基于阶层标识的无人机自主精准降落系统[J]. 航空学报, 2018, 39(10):213-221
ZHANG M, ZHAO Y, BU S H, et al. Autonomous precision landing system for UAV based on hierarchical identification[J]. Journal of Aeronautics, 2018, 39(10):213-221
[11] 贾配洋, 彭晓东, 周武根. 四旋翼无人机自主移动降落方法研究[J]. 计算机科学, 2017(S2):530-533
JIA P Y, PENG X D, ZHOU W G. Research on autonomous mobile landing method of four-rotor UAV[J]. Computer Science, 2017(S2):530-533
[12] 范江涛, 汪仁煌, 周武, 等. 基于数字图像处理技术的针式仪表读数识别[J]. 广东工业大学学报, 2007, 24(4):76-78
FAN J T, WANG R H, ZHOU W, et al. Recognition of needle meter reading based on digital image processing technology[J]. Journal of Guangdong University of Technology, 2007, 24(4):76-78
[13] 曹爽. 基于OTSU算法的图像阈值分割技术[D]. 太原:太原理工大学, 2018.
[14] 朱斌, 陈庆伟. 垂直/短距起降飞机的轨迹跟踪控制器设计[J]. 自动化学报, 2019, 45(6):1166-1176
ZHU B, CHEN Q W. Design of trajectory tracking controller for vertical/short range takeoff and landing aircraft[J]. Journal of Automation, 2019, 45(6):1166-1176
[15] 李一飞. 四旋翼飞行器中PID控制研究[J]. 技术与市场, 2016, 23(7):90-91
LI Y F. Research on PID control in quad-rotor aircraft[J]. Technology and Market, 2016, 23(7):90-91
[16] 黄良沛, 邹东升, 陈磊, 等. 一种模糊PID控制器的设计与仿真[J]. 机械工程师, 2018(11):7-9
HUANG L P, ZOU D S, CHEN L, et al. Design and simulation of a kind of fuzzy PID controller[J]. Mechanical Engineer, 2018(11):7-9
[1] 汝少楠, 何元烈, 叶星余. 基于稀疏直接法闭环检测定位的视觉里程计[J]. 广东工业大学学报, 2021, 38(03): 48-54.
[2] 杨孟军, 苏成悦, 陈静, 张洁鑫. 基于卷积神经网络的视觉闭环检测研究[J]. 广东工业大学学报, 2018, 35(05): 31-37.
[3] 卢萍, 金朝永. 收敛速度;误差迭代;神经网络;仿真; PID控制[J]. 广东工业大学学报, 2011, 28(4): 55-58.
[4] 刘洋; 王钦若; . 基于内模控制的PID参数整定及仿真[J]. 广东工业大学学报, 2008, 25(1): 66-68.
[5] 惠阿丽; 郑建明; 孙瑜; . 非线性系统闭环PD型迭代学习收敛性分析[J]. 广东工业大学学报, 2006, 23(2): 42-47.
[6] 彭显刚; 李超; 刘建华; . 同步发电机励磁的自适应 PID 控制[J]. 广东工业大学学报, 1997, 14(1): 65-71.
[7] 徐刚立. 电阻炉单片微型计算机控制系统的研究[J]. 广东工业大学学报, 1996, 13(1): 78-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!