广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 1-8.doi: 10.12052/gdutxb.190147

• •    下一篇

基于因果模型的社交网络用户购物行为研究

郝志峰1,2, 黎伊婷1, 蔡瑞初1, 曾艳1, 乔杰1   

  1. 1. 广东工业大学 计算机学院, 广东 广州 510006;
    2. 佛山科学技术学院 数学与大数据学院, 广东 佛山 528000
  • 收稿日期:2019-11-29 出版日期:2020-05-12 发布日期:2020-05-12
  • 作者简介:郝志峰(1968-),男,教授,博士生导师,主要研究方向为机器学习、人工智能
  • 基金资助:
    国家自然科学基金资助项目(61876043);广东省自然科学基金资助项目(2014A030306004,2014A030308008);NSFC-广东联合基金资助项目(U1501254);广东特支计划资助项目(2015TQ01X140);广州市珠江科技新星资助项目(201610010101);广州市科技计划项目(201902010058)

A Research on Users’ Shopping Behaviors in Social Network Based on Causal Model

Hao Zhi-feng1,2, Li Yi-ting1, Cai Rui-chu1, Zeng Yan1, Qiao Jie1   

  1. 1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China;
    2. College of Mathematics and Big Data, Foshan University, Foshan 528000, China
  • Received:2019-11-29 Online:2020-05-12 Published:2020-05-12

摘要: 社交网络用户的购物行为体现用户在社交影响下自身物质需求和社交需求的意愿,是社交网络营销的重要研究内容。传统的网络购物行为分析仅关注用户行为间的相似度,忽略了用户的社交需求及同伴行为的影响。对此,结合反从众理论和社交需求特性,对用户购物行为进行特征构建;其次,针对社交网络用户数据不完全观察特性,提出了基于快速因果推断(Fast Causal Inference,FCI)的用户行为因果机制发现算法;最后,基于模型的实验分析和实证分析验证了模型因果机制的合理性。

关键词: 网络购物, 社交行为, 反从众, FCI算法, 因果网络

Abstract: Shopping behaviors in the social network can reflect users’ willingness to meet their material needs and social needs under the influence of social interaction, which is an important research in social network marketing. The traditional analysis of online shopping behavior only focuses on the similarity between users’ behaviors while ignoring the influence of users’ social needs and peer behaviors. For that, the features of users’ shopping behavior are constructed by combining anti-conformity theory and social needs. Secondly, aiming at the incomplete observation of user data in social network, a causal mechanism discovery algorithm for users’ behaviors based on Fast Causal Inference (FCI) is proposed. Finally, the rationality of the causal mechanism of our model is verified based on the experimental analysis and empirical analysis.

Key words: online shopping, social behavior, anti-conformity, FCI algorithm, causal network

中图分类号: 

  • TP301.6
[1] YUN Y, HOOSHYAR D, JO J, et al. Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review [J]. Journal of Information Science, 2018, 44(3): 331-344
[2] LO C, FRANKOWSKI D, LESKOVEC J. Understanding behaviors that lead to purchasing: a case study of pinterest[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 531-540.
[3] ANSARI S, ANSARI G, GHORI M U, et al. Impact of brand awareness and social media content marketing on consumer purchase decision [J]. Journal of Public Value and Administration Insights, 2019, 2(2): 5-10
[4] XU-PRIOUR D L, CLIQUET, GÉRARD, et al. The influence of buyers’ time orientation on online shopping behavior: a typology [J]. International Journal of Electronic Commerce, 2017, 21(3): 299-333
[5] ASCH S E. Effects of Group Pressure Upon the Modification and Distortion of Judgments[M]. New York: Holt, Reinhart & Winston, 1952.
[6] TANG J, WU S, SUN J. Confluence: Conformity influence in large social networks[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013: 347-355.
[7] ESCALAS J E, BETTMAN J R. Self-construal, reference groups, and brand meaning [J]. Journal of Consumer Research, 2005, 32(3): 378-389
[8] SNYDER C R. Product scarcity by need for uniqueness interaction: a consumer catch-22 carousel? [J]. Basic and Applied Social Psychology, 1992, 13(1): 9-24
[9] LEVY G. Anti-herding and strategic consultation [J]. European Economic Review, 2004, 48(3): 503-525
[10] CONNER S L, REARDON J, MILLER C, et al. Cultural antecedents to the normative, affective, and cognitive effects of domestic versus foreign purchase behavior [J]. Journal of Business Economics and Management, 2017, 18(1): 100-115
[11] RAHMAN M A, ISLAM M A, ESHA B H, et al. Consumer buying behavior towards online shopping: an empirical study on Dhaka city, Bangladesh [J]. Cogent Business & Management, 2018, 5(1): 1-22
[12] 莫赞, 罗敏瑶. 在线评论对消费者购买决策的影响研究——基于评论可信度和信任倾向的中介、调节作用[J]. 广东工业大学学报, 2019, 36(2): 54-61 MO Z, LUO M Y. A research of the influence of online reviews on consumer purchase decision-based on mediation and adjustment of reliability comments and trust tendency [J]. Journal of Guangdong University of Technology, 2019, 36(2): 54-61
[13] ALAVIJEH M R K, ESMAEILI A, SEPAHVAND A, et al. The effect of customer equity drivers on word-of-mouth behavior with mediating role of customer loyalty and purchase intention [J]. Engineering Economics, 2018, 29(2): 236-246
[14] 彭嘉恩, 邓秀勤, 刘太亨, 等. 融合社交和标签信息的隐语义模型推荐算法[J]. 广东工业大学学报, 2018, 35(4): 45-50 PENG J E, DENG X Q, LIU T H, et al. A recommendation algorithm of latent factor model fused with the social and tag information [J]. Journal of Guangdong University of Technology, 2018, 35(4): 45-50
[15] QIU J, TANG J, MA H, et al. Deepinf: social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 2110-2119.
[16] SPIRTES P, GLYMOUR C N, SCHEINES R, et al. Causation, Prediction, and Search[M]. Cambridge: MIT Press, 2000.
[17] 蔡瑞初, 陈薇, 张坤, 等. 基于非时序观察数据的因果关系发现综述[J]. 计算机学报, 2017, 40(6): 1470-1490 CAI R C, CHEN W, ZHANG K, et al. A survey on non-temporal series observational data based causal discovery [J]. Chinese Journal of Computers, 2017, 40(6): 1470-1490
[18] YIN H, HU Z, ZHOU X, et al. Discovering interpretable geo-social communities for user behavior prediction[C]//2016 IEEE 32nd International Conference on Data Engineering (ICDE). Las Vegas: IEEE, 2016: 942-953.
[19] BAKSHY E, HOFMAN J M, MASON W A, et al. Everyone's an influencer: quantifying influence on twitter[C]//Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 65-74.
[20] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07)[2019-12-28]. https://arxiv.org/abs/1301.3781.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780
[22] LEE J K, HANSEN S S, LEE S Y. The effect of brand personality self-congruity on brand engagement and purchase intention: The moderating role of self-esteem in Facebook[EB/OL]. Berlin: Springer, (2018-06-20)[2019-12-28]. https://doi.org/10.1007/s12144-018-9898-3.
[23] SVETNIK V, LIAW A, TONG C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling [J]. Journal of Chemical Information & Computer Sciences, 2003, 43(6): 1947-1958
[24] KELLEY H H. The processes of causal attribution [J]. American Psychologist, 1973, 28(2): 107
[1] 刘冬宁, 王子奇, 曾艳姣, 文福燕, 王洋. 基于复合编码特征LSTM的基因甲基化位点预测方法[J]. 广东工业大学学报, 2023, 40(01): 1-9.
[2] 洪英汉, 郝志峰, 麦桂珍, 陈平华. 基于低阶条件独立测试的因果网络结构学习方法[J]. 广东工业大学学报, 2019, 36(05): 14-19.
[3] 周怡璐, 王振友, 李叶紫, 李锋. MOEA/D聚合函数的二次泛化及其优化性能分析[J]. 广东工业大学学报, 2018, 35(04): 37-44.
[4] 黎启祥, 肖燕珊, 郝志峰, 阮奕邦. 基于抗噪声的多任务多示例学习算法研究[J]. 广东工业大学学报, 2018, 35(03): 47-53.
[5] 徐焕芬, 刘伟, 谢月珊. 双种群烟花算法[J]. 广东工业大学学报, 2017, 34(05): 65-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!