广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (03): 75-81.doi: 10.12052/gdutxb.190099

• • 上一篇    下一篇

基于鲸鱼优化参数的最小二乘支持向量机短期负荷预测方法

陈友鹏, 陈璟华   

  1. 广东工业大学 自动化学院, 广东 广州 510006
  • 收稿日期:2019-07-26 出版日期:2020-05-12 发布日期:2020-05-21
  • 作者简介:陈友鹏(1995-),男,硕士研究生,主要研究方向为电力系统安全运行与控制
  • 基金资助:
    中央财政支持地方高校发展专项资金项目(粤财教[2016]202号)

A Short-term Load Forecasting Method Based on Support Vector Machine with Whale Optimization Parameters

Chen You-peng, Chen Jing-hua   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-07-26 Online:2020-05-12 Published:2020-05-21

摘要: 大量分布式能源站的出现以及电动汽车的普及,给电力系统的安全、经济运行带来影响的同时,传统的负荷预测方法也面临挑战。针对这个问题,提出了利用鲸鱼算法优化最小二乘支持向量机(Whale Optimization Algorithm-Least Squares Support Vector Machine,WOA-LSSVM)进行短期电力系统负荷预测。利用鲸鱼算法全局寻优能力强、收敛速度快的优点,弥补最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)选参的盲目性,提高LSSVM的负荷预测精度。采用WOA-LSSVM对2013年浙江某地区历史负荷数据预测未来1 d的负荷,并与粒子群优化最小二乘支持向量机模型和标准LSSVM模型预测结果对比。结果表明,基于鲸鱼优化LSSVM的短期负荷预测具有较高的预测精度,相对误差较小。

关键词: 短期电力负荷预测, 最小二乘支持向量机, 鲸鱼优化算法

Abstract: With the emergence of a large number of distributed energy stations and the popularity of electric vehicles, the security and economic operation of the power system are affected. At the same time, the traditional load forecasting methods are also facing challenges. To solve this problem, a Whale Optimization Algorithm-Least Squares Support Vector Machine (WOA-LSSVM) is proposed for short-term power system load forecasting. Using the advantages of whale algorithm such as strong global optimization ability and fast convergence speed, the blindness of parameter selection of LS-SVM is overcome, and the load forecasting accuracy of LS-SVM is improved. WOA-LSSVM is used to forecast the load of a certain area in Zhejiang province in the next day based on the historical load data in 2013. The results are compared with those of the particle swarm optimization least squares support vector machine model and the standard LSSVM model. The results show that the short-term load forecasting based on the whale optimization LSSVM has a higher forecasting accuracy and a smaller relative error.

Key words: short-term load forecasting, least squares support vector machine, whale optimization algorithm

中图分类号: 

  • TM734
[1] 李勋, 龚庆武, 胡元潮, 等. 智能配电网体系探讨[J]. 电力自动化设备, 2011, 31(8): 108-126 LI X, GONG Q W, HU Y C, et al. Discussion of smart distribution grid system [J]. Electric Power Automation Equipment, 2011, 31(8): 108-126
[2] BESSA R, TRINDADE A, MIRANDA V. Spatial-temporal solar power forecasting for smart grids [J]. IEEE Transactions on Industrial Informatics, 2015, 11(1): 232-241
[3] 金光大. 基于人工免疫算法的神经网络电力系统短期负荷预测[J]. 成都大学学报(自然科学版), 2013, 32(2): 159-161 JIN G D. Short-term load forecasting of power system based on artificial immune algorithm [J]. Journal of Chengdu University (Natural Science), 2013, 32(2): 159-161
[4] 郭经韬, 陈璟华, 周俊, 等. 基于组合混沌序列动态粒子群算法的电力系统无功优化[J]. 广东工业大学学报, 2014, 31(2): 85-89 GUO J T, CHEN J H, ZHOU J, et al. Reactive power optimization based on combined chaotic dynamic particle swarm optimization algorithm [J]. Guangdong University of Technology, 2014, 31(2): 85-89
[5] 孙薇, 刘默涵. 基于改进最小二乘支持向量机的短期负荷预测[J]. 电力科学与工程, 2015, 31(12): 16-21 SUN W, LIU M H. Short-term load forecasting based on improved least squares support vector machine [J]. Electric Power Science and Engineering, 2015, 31(12): 16-21
[6] SUN W, HE Y J. Optimal support vector machine based short-term load forecasting model with input variables and samples selection[C]//HUANG D S, HEUTTEL, LOOG M. ICIC 2007, Berlin Heidelberg: Springer-Verlag, 2007: 39-47.
[7] WANG S, WANG Q. Prediction and dispatching of workshop material demand based on least squares support vector regression with genetic algorithm [J]. Information-an International Interdisciplinary Journal, 2012, 15(1): 213-222
[8] 柴远斌. 改进粒子群算法和最小二乘支持向量机的电力负荷预测[J]. 电气应用, 2015, 6(12): 46-49
[9] SEYEDALI M, ANDREW L. The whale optimization algorithm [J]. Engineering Software, 2016, 95(5): 51-67
[10] 唐俊杰, 陈璟华, 邱明晋. 基于动态模糊混沌粒子群算法的含电动汽车微电网多目标优化调度研究[J]. 广东工业大学学报, 2018, 35(3): 100-106 TANG J J, CHEN J H, QIU M J. Multi-objective dispatch of microgrid based on dynamic fuzzy chaotic particle swarm algorithm [J]. Journal of Guangdong University of Technology, 2018, 35(3): 100-106
[11] 李元诚, 方延健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6): 55-59 LI Y C, FANG Y J, YU E K. Study of support vector machines for short-term load forecasting [J]. Proceedings of the CSEE, 2003, 23(6): 55-59
[12] 张育凡. 基于蚱蜢优化和最小二乘支持向量机的电力负荷预测研究[D]. 甘肃: 兰州大学, 2018.
[13] 谭风霜, 陈梦涛, 汪龙龙. 基于积温效应和优化支持向量机的短期电力负荷预测[J]. 电力需求侧管理, 2018, 20(5): 33-36 TAN F S, CHEN M T, WANG L L. Short-term load forecasting based on accumulated temperature effect and optimized support vector machine [J]. DSM, 2018, 20(5): 33-36
[14] 崔东文. 鲸鱼优化算法在水库优化调度中的应用[J]. 水利水电科技进展, 2017, 37(3): 72-76 CUI D W. Application of whale optimization algorithm in reservoir optimal operation [J]. Science and Technology of Water Resources, 2017, 37(3): 72-76
[15] ZHI B S, YANG L, TAO Y. Short-term load forecasting based on LS-SVM optimized by bacterial colony chemotaxis algorithm[C]//International Conference on Information and Multimedia Technology. South Korea: Jeju Island, 2009: 306-309.
[16] 陈璟华, 邱明晋, 唐俊杰, 等. 基于改进差分进化和粒子群混合算法的电力系统最优潮流计算[J]. 广东工业大学学报, 2017, 34(5): 22-28 CHEN J H, QIU M J, TANG J J, et al. A hybrid algorithm based on improved differential evolution and particle swarm optimization for power system optimal power flow calculation [J]. Journal of Guangdong University of Technology, 2017, 34(5): 22-28
[17] 熊军华, 牛珂, 张春歌, 等. 基于小波变异果蝇优化支持向量机短期负荷预测方法研究[J]. 电力系统保护与控制, 2017, 45(13): 71-77 XIONG J H, NIU K, ZHANG C G, et al. LSSVM in short-term load forecasting based on wavelet transform and mutant fruit fly optimization algorithm [J]. Power System Protection and Control, 2017, 45(13): 71-77
[18] 谢宏, 魏江平, 刘鹤立. 短期负荷预测中支持向量机模型的参数选取和优化方法[J]. 中国电机工程学报, 2006, 26(22): 17-22 XIE H, WEI J P, LIU H L. Parameter selection and optimization method of SVM model for short-term load forecasting [J]. Proceedings of the CSEE, 2006, 26(22): 17-22
[19] 杨国健, 杨镜非, 童开蒙, 等. 短期负荷预测的支持向量机参数选择方法[J]. 电力系统及其自动化学报, 2012, 24(6): 148-151 YANG G J, YANG J F, TONG K M, et al. Parameter selection of support vector machine for short-term load forecasting [J]. Proceedings of the CSU-EPSA, 2012, 24(6): 148-151
[20] 郝晓弘, 刘鹏娟, 汪宁渤. 混沌优化PSO-LSSVM算法的短期负荷预测[J]. 兰州理工大学学报, 2019, 45(1): 85-90 HAO X H, LIU P J, WANG N B. Short-term load forecasting using chaotic optimization PSO-LSSVM algorithm [J]. Journal of Lanzhou University of Technology, 2019, 45(1): 85-90
[1] 符政鑫, 刘霜, 段意强, 朱伟东. 一种电网需求响应资源参与天然气市场的协调框架[J]. 广东工业大学学报, 2023, 40(02): 64-73.
[2] 唐俊杰, 陈璟华, 邱明晋. 基于动态模糊混沌粒子群算法的含电动汽车微电网多目标优化调度研究[J]. 广东工业大学学报, 2018, 35(03): 100-106.
[3] 马留洋, 孟安波, 殷豪. 基于混合纵横交叉算法的机组组合优化[J]. 广东工业大学学报, 2017, 34(06): 68-72,77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!