广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (04): 27-34.doi: 10.12052/gdutxb.200002

• • 上一篇    下一篇

基于双向条目注意网络的推荐系统

赵永建, 杨振国, 刘文印   

  1. 广东工业大学 计算机学院,广东 广州 510006
  • 收稿日期:2020-12-25 出版日期:2020-07-11 发布日期:2020-07-11
  • 通信作者: 刘文印(1966-),男,教授,博士生导师,主要研究方向为机器学习、区块链、网络身份安全等,E-mail:liuwy@gdut.edu.cn E-mail:liuwy@gdut.edu.cn
  • 作者简介:赵永建(1994-),男,硕士研究生,主要研究方向为机器学习、推荐系统
  • 基金资助:
    国家自然科学基金资助项目(61703109, 91748107);广东省引进创新科研团队计划资助项目(2014ZT05G157)

DIAN: Dual-aspect Item Attention Network for Item-based Recommendation

Zhao Yong-jian, Yang Zhen-guo, Liu Wen-yin   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-12-25 Online:2020-07-11 Published:2020-07-11

摘要: 提出了一个基于双向条目注意网络(Dual-aspect Item Attention Network, DIAN)的推荐系统, DIAN由2个主要模块组成, 分别是用于建模历史条目和目标条目之间的条目相似性的神经关注模型(Neural Attentive Item Similarity Model, NAIS)和用于建模历史条目之间相似性的双归一化自注意力条目相似性模型(Dual Normalization Self-attention Item Similarity, SAIS)。一方面, 引入神经注意模型来区分用户配置文件中历史项对目标项的影响。另一方面, 为了更好地表达用户的兴趣, 引入自注意力网络, 从用户的历史交互项中推断出条目与条目之间的关系。提出的SAIS模型能够估计用户交互轨迹中每个条目对用户兴趣的相对权重。用双重归一化机制改进了标准的自注意力网络, 并且在2个公共基准上进行大量实验证明所提出的方法优于最先进的推荐模型。

关键词: 注意力网络, 协同过滤, 自注意力模型, 双归一化, 推荐

Abstract: A dual-aspect item attention network (DIAN) for item-based recommendation is proposed, which jointly takes into account the aspects of importance of historical items in a user profile to the target items and the underlying relations among these items. DIAN consists of two main modules, a neural attentive model for item similarity between historical and target items (NAIS), and a dual normalization self-attention item similarity model for item similarity underlying historical items (SAIS). On one hand, the neural attentive model is introduced to distinguish the different contribution of the historical items in a user profile to the perdition on the target item. On the other hand, a self-attention network is proposed to infer the item-item relationship from users’ historical interactions, which is able to estimate the relative weights of each item in user interaction trajectories, in order to learn better representations for users’ interests. Furthermore, a self-attention network is proposed using a dual normalization mechanism, consisting of a layer focusing on extracting users’ representation from historical items, and a layer making it unaffected by the number of users’ historical items. Extensive experiments conducted on two public benchmarks demonstrate the proposed method outperforms the state-of-the-art recommendation models.

Key words: attention networks, collaborative filtering, self-attention model, dual normalization, recommendation

中图分类号: 

  • TP391
[1] KABBUR S, NING X, KARYPIS G. Fism: factored item similarity models for top-N recommender systems[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. Seattle: ACM, 2013: 659-667.
[2] HE X, HE Z, SONG J, et al. Nais: neural attentive item similarity model for recommendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2354-2366
[3] PAN R, ZHOU Y, CAO B, et al. One-class collaborative filtering[C]//2008 Eighth IEEE International Conference on Data Mining. Pisa: IEEE, 2008: 502-511.
[4] CREMONESI P, KOREN Y, TURRIN R. Performance of recommender algorithms on top-N recommendation tasks[C]//Proceedings of the 4th ACM Conference on Recommender Systems. Spain: ACM, 2010: 39-46.
[5] CHEN X, ZHANG Y, AI Q, et al. Personalized key frame recommendation[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Tokyo: ACM, 2017: 315-324.
[6] HE X, ZHANG H, KAN M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa: ACM, 2016: 549-558.
[7] 高俊艳, 刘文印, 杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(4): 18-23
GAO J Y, LIU W Y, YANG Z G. Object tracking combined with attention and feature fusion [J]. Journal of Guangdong University of Technology, 2019, 36(4): 18-23
[8] 曾碧卿, 韩旭丽, 王盛玉, 等. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报, 2019, 36(4): 10-17
ZENG B Q, HAN X L, WANG S Y, et al. Sentiment classification based on double attention convolutional neural network model [J]. Journal of Guangdong University of Technology, 2019, 36(4): 10-17
[9] LIN Z, FENG M, SANTOS C N, et al. A structured self-attentive sentence embedding[J]. arXiv preprint arXiv: 1703.03130, 2017.
[10] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[J]. arXiv preprint arXiv: 1805.08318, 2018.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Red Hook: NIPS, 2017: 5998-6008.
[12] ZHANG S, TAY Y, YAO L, et al. Next item recommendation with self-attention[J]. arXiv preprint arXiv: 1808.06414, 2018.
[13] SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Advances In neural Information Processing Systems. Red Hook: NIPS, 2013: 926-934.
[14] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth: ACM, 2017: 173-182.
[15] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization [J]. Journal of Machine Learning Research, 2011, 12(7): 257-269
[16] GENG X, ZHANG H, BIAN J, et al. Learning image and user features for recommendation in social networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4274-4282.
[17] ELKAHKY A M, SONG Y, HE X. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web .Florence: ACM, 2015: 278-288.
[18] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of The 10th International Conference on World Wide Web. Hong Kong: ACM 2001: 285-295.
[19] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: bayesian personalized ranking from implicit feedback[J]. arXiv preprint arXiv: 1205.2618, 2012.
[1] 胡晓敏, 龙祖涛, 李敏. 基于用户分层的多目标推荐算法[J]. 广东工业大学学报, 2023, 40(01): 10-18.
[2] 易闽琦, 刘洪伟, 高鸿铭. 电商平台产品共同购买网络的影响因素研究[J]. 广东工业大学学报, 2022, 39(03): 16-24.
[3] 杨达森. DPLORE:一种差分隐私保护位置推荐算法[J]. 广东工业大学学报, 2021, 38(01): 69-74.
[4] 何炜俊, 周应堂. 结合强弱联系和兴趣的社交网络推荐算法[J]. 广东工业大学学报, 2019, 36(03): 39-46.
[5] 彭嘉恩, 邓秀勤, 刘太亨, 刘富春, 李文洲. 融合社交和标签信息的隐语义模型推荐算法[J]. 广东工业大学学报, 2018, 35(04): 45-50.
[6] 林穗, 郑志豪. 基于关联规则的客户行为建模与商品推荐研究[J]. 广东工业大学学报, 2018, 35(03): 90-94.
[7] 张巍, 黄健华, 刘冬宁, 滕少华, 刘子婷. 一种改进的结合评分和评论信息的推荐方法[J]. 广东工业大学学报, 2017, 34(06): 27-31,48.
[8] 胡惠成, 陈平华. 一种融合隐式信任关系的推荐算法[J]. 广东工业大学学报, 2017, 34(03): 43-48.
[9] 张巍, 张思勤, 宋静静, 滕少华, 刘艳. 基于E-CARGO的在线社区多对多好友推荐机制研究[J]. 广东工业大学学报, 2017, 34(03): 36-42.
[10] 王勇, 易庭. 基于距离衰减和评分趋势改进的协同推荐算法[J]. 广东工业大学学报, 2015, 32(2): 38-42.
[11] 汪岭, 傅秀芬, 王晓牡. 基于大数据集的混合动态协同过滤算法研究[J]. 广东工业大学学报, 2014, 31(3): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!