广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (06): 32-40.doi: 10.12052/gdutxb.200029
何锐超, 刘洪伟, 高鸿铭, 范梦婷, 詹明君
He Rui-chao, Liu Hong-wei, Gao Hong-ming, Fan Meng-ting, Zhan Ming-jun
摘要: 在电子商务环境下,充分了解消费者的兴趣变化过程并预测其购买意愿是个性化推荐系统需要解决的问题,因此具有巨大潜在信息的点击流数据因其易获性及预测的准确性得到了广泛的研究与应用。为了挖掘用户点击行为所反映消费者的兴趣变化过程并预测消费者的购买意愿,通过点击流数据,基于兴趣漂移理论,采用偏好顺序结构评估法(Preference Ranking Organization Methods for Enrichment Evaluations,PROMETHEE)的多属性决策方法建立有效的模型进行测量与预测。结果建立了包括3个一级指标和8个二级指标构成的多会话消费者购买意愿评价体系,为消费者购买意愿预测提供了一种实用的评价方法。
中图分类号:
[1] 许波, 张结魁, 周军. 基于行为分析的用户兴趣建模[J]. 情报杂志, 2009, 28(6): 166-169. XU B, ZHANG J K, ZHOU J. User interest modeling based on behavior analysis [J]. Information Magazine, 2009, 28(6): 166-169. [2] 王建军, 王玲玉, 王蒙蒙. 网络口碑、感知价值与消费者购买意愿: 中介与调节作用检验[J]. 管理工程学报, 2019, 33(4): 80-87. WANG J J, WANG L Y, WANG M M. Internet word of mouth, perceived value and consumers’ willingness to buy: a test of intermediary and moderating effects [J]. Chinese Journal of Management Engineering, 2019, 33(4): 80-87. [3] 邵景波, 李泽昀, 高子强. 奢侈品母品牌价值感知对延伸品购买意愿的影响-顾客满意和品牌信任的链式中介作用[J]. 预测, 2019, 38(3): 38-44. SHAO J B, LI Z Y, GAO Z Q. The impact of luxury mother brand value perception on the purchase intention of extended products—chain mediating role of customer satisfaction and brand trust [J]. Forecast, 2019, 38(3): 38-44. [4] 易明, 操玉杰, 毛进. 基于点击流的个性化信息检索研究[J]. 情报科学, 2011, 29(4): 619-623. YI M, CAO Y J, MAO J. Research on personalized information retrieval based on click stream [J]. Information Science, 2011, 29(4): 619-623. [5] BRANS J P, MARESCHAL B. Promethee V: mcdm problems with segmentation constraints [J]. INFOR: Information Systems and Operational Research, 1992, 30(2): 85-96. [6] BEHZADIANA M, ALBADVI A, AGHDASI M. PROMETHEE: a comprehensive literature review on methodologies and applications [J]. European Journal of Operational Research, 2010, 200(1): 198-215. [7] 冯建英, 穆维松, 傅泽田. 消费者的购买意愿研究综述[J]. 现代管理科学, 2006, 2(11): 7-9. FENG J Y, MU W S, FU Z T. Review of consumers’ purchasing intention [J]. Modern Management Science, 2006, 2(11): 7-9. [8] 由丽萍, 王嘉敏. 基于情感分析和VIKOR多属性决策法的电子商务顾客满意感测度[J]. 情报学报, 2015, 34(10): 1098-1110. YOU L P, WANG J M. E-commerce customer satisfaction measurement based on sentiment analysis and VIKOR multi-attribute decision making method [J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(10): 1098-1110. [9] 易明, 毛进, 邓卫华. 基于社会化标签网络的细粒度用户兴趣建模[J]. 现代图书情报技术, 2011, 27(4): 35-41. YI M, MAO J, DENG W H. Fine-grained user interest modeling based on social tag network [J]. Modern Library and Information Technology, 2011, 27(4): 35-41. [10] 莫赞, 罗敏瑶. 在线评论对消费者购买决策的影响研究-基于评论可信度和信任倾向的中介、调节作用[J]. 广东工业大学学报, 2019, 36(2): 54-61. MO Z, LUO M Y. Research on the impact of online reviews on consumers’ purchase decisions—based on the mediating and moderating role of review credibility and trust tendency [J]. Journal of Guangdong University of Technology, 2019, 36(2): 54-61. [11] 左文明, 陈少杰, 王旭, 等. 基于前景理论的网络消费者多属性行为决策模型[J]. 管理工程学报, 2019, 33(3): 125-135. ZUO W M, CHEN S J, WANG X, et al. Multi-attribute behavior decision model for online consumers based on prospect theory [J]. Journal of Management Engineering, 2019, 33(3): 125-135. [12] 刘洪伟, 高鸿铭, 陈丽, 等. 基于用户浏览行为的兴趣识别管理模型[J]. 数据分析与知识发现, 2018, 2(2): 74-85. LIU H W, GAO H M, CHEN L, et al. Interest recognition management model based on user browsing behavior [J]. Data Analysis and Knowledge Discovery, 2018, 2(2): 74-85. [13] 李双双, 陈毅文. 点击流: 一种研究网上消费者的新范式[J]. 心理科学进展, 2007, 15(4): 715-720. LI S S, CHEN Y W. Clickstream: a new paradigm for studying online consumers [J]. Advances in Psychological Science, 2007, 15(4): 715-720. [14] 袁兴福, 张鹏翼, 刘洪莲, 等. 基于点击流的电商用户会话建模[J]. 图书情报工作, 2015, 59(1): 119-126. YUAN X F, ZHANG P Y, LIU H L, et al. Modeling of e-commerce user sessions based on click stream [J]. Library and Information Service, 2015, 59(1): 119-126. [15] MOE W W. Buying, searching, or browsing: differentiating between online shoppers using in-store navigational clickstream [J]. Journal of consumer psychology, 2003, 13(1-2): 29-39. [16] MONTGOMERY A L, LI S, SRINIVASAN K, et al. Modeling online browsing and path analysis using clickstream data [J]. Marketing science, 2004, 23(4): 579-595. [17] 刘洪莲, 张鹏翼, 王军. 多会话网络购物商品信息搜寻行为研究[J]. 图书情报工作, 2015(14): 117-125. LIU H L, ZHANG P Y, WANG J. Research on product information search behavior in multi-session online shopping [J]. Library and Information Service, 2015(14): 117-125. [18] MOKRYN O, BOGINA V, KUFLIK T. Will this session end with a purchase? inferring current purchase intent of anonymous visitors [J]. Electronic Commerce Research and Applications, 2019, 34: 100836. [19] JENKINS P. Click Graph: Web page embedding using clickstream data for multitask learning[C]//Companion Proceedings of the 2019 World Wide Web Conference. San Francisco: ACM International World Wide Web Conference, 2019: 37-41. [20] 左妹华, 刘洪伟, 何锐超, 等. 基于logistic回归模型的消费者购买意向研究[J]. 南昌大学学报(理科版), 2019, 43(4): 398-403. ZUO M H, LIU H W, HE R C, et al. Research on consumer buying intention based on logistic regression model [J]. Journal of Nanchang University (Science and Technology Edition), 2019, 43(4): 398-403. [21] 范梦婷, 刘洪伟, 高鸿铭, 等. 电子商务平台下的竞争产品市场结构研究[J]. 广东工业大学学报, 2019, 36(6): 32-37. FAN M T, LIU H W, GAO H M, et al. Research on the market structure of competitive products under the E-commerce platform [J]. Journal of Guangdong University of Technology, 2019, 36(6): 32-37. [22] ZAIM H, RAMDANI M, HADDI A. Fuzzy-based mining framework of browsing behavior to enhance E-commerce website performance: case study from Kelkoo. com[C]//Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications. New York: Association for Computing Machinery, 2018: 1-6. [23] 石磊, 丁鑫, 陶永才, 等. 一种检测兴趣漂移的元路径推荐模型[J]. 小型微型计算机系统, 2019, 40(3): 612-617. SHI L, DING X, TAO Y C, et al. A meta-path recommendation model for detecting interest drift [J]. Microcomputer System, 2019, 40(3): 612-617. [24] JANNACH D, LERCHE L, JUGOVAC M. Adaptation and evaluation of recommendations for short-term shopping goals[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna: ACM Rec Sys, 2015: 211-218. [25] 王维, 高岭, 高全力. 融合用户信任和用户兴趣漂移的协同过滤算法[J]. 微电子学与计算机, 2019, 36(7): 103-108. WANG W, GAO L, GAO Q L. Collaborative filtering algorithm combining user trust and user interest drift [J]. Microelectronics & Computer, 2019, 36(7): 103-108. [26] 周翔, 张鹏翼, 王军. 移动购物用户信息浏览特征及对购买的影响研究-基于移动电商APP点击流日志的分析[J]. 数据分析与知识发现, 2018, 2(4): 1-9. ZHOU X, ZHANG P Y, WANG J. Research on the characteristics of mobile shopping users’ information browsing and their impact on purchases—analysis based on the click stream log of mobile e-commerce APP [J]. Data Analysis and Knowledge Discovery, 2018, 2(4): 1-9. [27] PARK J, CHUNG H. Consumers’ travel website transferring behaviour: analysis using clickstream data-time, frequency, and spending [J]. The Service Industries Journal, 2009, 29(10): 1451-1463. [28] STEWART T J. A critical survey on the status of multiple criteria decision making theory and practice [J]. Omega, 1992, 20(5): 569-586. |
No related articles found! |
|