广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (02): 1-9.doi: 10.12052/gdutxb.200086
• 可拓学与创新方法 • 下一篇
王体春, 华洋, 秦家祺
Wang Ti-chun, Hua Yang, Qin Jia-qi
摘要: 蕴含关系是影响复杂产品方案快速配置设计的重要因素。为了有效提升复杂产品方案可拓配置设计的能力, 针对复杂产品方案设计过程中蕴含信息的有效表达、挖掘、推理和重用等进行了研究。对大型复杂产品方案可拓设计过程中的可拓本体概念模型、可拓本体蕴含系的信息量计算模型、基于可拓本体蕴含系的设计蕴含关系挖掘模型、基于可拓本体蕴含系的可拓重用度计算模型等进行了分析, 提出了一种基于可拓本体蕴含系的复杂产品可拓设计模式, 并给出了相应模型与算法的实现步骤和框架。通过具体的设计实例对文中的模型和算法进行了说明和验证分析, 结果验证了模型和算法的有效性和可行性, 从而为复杂产品方案可拓设计的顺利实施提供理论和工程应用支持。
中图分类号:
[1] ZHANG S Y, XU J H, GOU H W, et al. A research review on the key technologies of intelligent design for customized products [J]. Engineering, 2017(5): 631-640. [2] 杨东, 柴慧敏. 基于QFD和案例推理的绿色产品设计方案选择研究[J]. 科技管理研究, 2018, 38(16): 251-259. YANG D, CHAI H M. Research on green product design selection based on QFD and case based reasoning [J]. Science and Technology Management Research, 2018, 38(16): 251-259. [3] MA H Z, CHU X N, XUE D Y, et al. A systematic decision making approach for product conceptual design based on fuzzy morphological matrix [J]. Expert Systems with Applications, 2017, 81: 444-456. [4] 杨涛, 杨育, 张东东. 考虑客户需求偏好的产品创新概念设计方案生成[J]. 计算机集成制造系统, 2015, 21(4): 875-884. YANG T, YANG Y, ZHANG D D. Generation of product innovation conceptual design schemes for considering the demand preferences of customers [J]. Computer Integrated Manufacturing Systems, 2015, 21(4): 875-884. [5] JIANG J, DING G F, ZHANG J, et al. A systematic optimization design method for complex mechatronic products design and development [J]. Mathematical Problems in Engineering, 2018(2): 1-14. [6] 张良, 张树有, 刘晓健, 等. 基于灰色关联与权重顺序交叉的复杂产品配置方案重构技术[J]. 计算机集成制造系统, 2015, 21(10): 2564-2576. ZHANG L, ZHANG S Y, LIU X J, et al. Reconstruction technology of configuration design for complex product based on expanded GRA and weighted sequence cross [J]. Computer Integrated Manufacturing Systems, 2015, 21(10): 2564-2576. [7] 倪晋挺, 王志国, 连晓振, 等. 基于偏好信息的产品设计方案优选方法[J]. 计算机集成制造系统, 2019, 25(5): 1238-1247. NI J T, WANG Z G, LIAN X Z, et al. Optimization method of product design schemes based on preference information [J]. Computer Integrated Manufacturing Systems, 2019, 25(5): 1238-1247. [8] GRUHIER E, DEMOLY F, DUTARTRE O, et al. A formal ontology-based spatiotemporal mereotopology for integrated product design and assembly sequence planning [J]. Advanced Engineering Informatics, 2015, 29(3): 495-512. [9] 文家富, 郭伟, 邵宏宇. 基于领域本体和CBR的案例知识检索方法[J]. 计算机集成制造系统, 2017, 23(7): 1377-1385. WEN J F, GUO W, SHAO H Y. Case retrieve methodology based on domain ontology and case-based reasoning [J]. Computer Integrated Manufacturing Systems, 2017, 23(7): 1377-1385. [10] EMILIO M S, FAROUK B, ALAIN B. Ontology-based knowledge representation for additive manufacturing [J]. Computers in Industry, 2019, 109: 182-194. [11] CHEN Y, ZHAO M, XIE Y B, et al. A new model of conceptual design based on Scientific Ontology and intentionality theory-Part I [J]. The Conceptual Foundation Design Studies, 2015, 37: 12-36. [12] CHEN Y, ZHAO M, XIE Y B, et al. A new model of conceptual design based on scientific ontology and intentionality theory—art II: the process model [J]. Design Studies, 2015, 38: 139-160. [13] CHANG D N, CHEN C H. Product concept evaluation and selection using data mining and domain ontology in a crowdsourcing environment [J]. Advanced Engineering Informatics, 2015, 29(4): 759-774. [14] 赵燕伟, 周建强, 洪欢欢, 等. 可拓设计理论方法综述与展望[J]. 计算机集成制造系统, 2015, 21(5): 1158-1167. ZHAO Y W, ZHOU J Q, HONG H H, et al. Overview and prospects of extension design methodology [J]. Computer Integrated Manufacturing Systems, 2015, 21(5): 1158-1167. [15] 蔡文, 杨春燕. 可拓学的基础理论与方法体系[J]. 科学通报, 2013, 58(13): 1190-1199. CAI W, YANG C Y. Basic theory and methodology on Extenics [J]. Chin Sci Bull, 2013, 58(13): 1190-1199. [16] REN J Z. Technology selection for ballast water treatment by multi-stakeholders: a multi-attribute decision analysis approach based on the combined weights and extension theory [J]. Chemosphere, 2018, 191: 747-760. [17] 杨国为, 朱荣成, 张小锋, 等. 可拓本体的定义与性质[J]. 数学的实践与认识, 2015, 45(13): 215-225. YANG G W, ZHU R C, ZHANG X F, et al. Definition of extension ontology and its properties [J]. Mathematics in Practice and Theory, 2015, 45(13): 215-225. [18] 温树勇, 李卫华. 本体知识拓展分析树在可拓策略生成系统的应用[J]. 智能系统学报, 2014, 9(1): 1158-1167. WEN S Y, LI W H. Application of in the ontology knowledge expansion analysis tree extension strategy generation system [J]. CAAI Transactions on Intelligent Systems, 2014, 9(1): 1158-1167. [19] 杨春燕. 可拓创新方法[M]. 北京: 科学出版社, 2017. [20] YANG C Y. Extension Innovation Method[M]. New York: CRC Press, 2019. [21] 李仔浩, 杨春燕, 李文军. 可拓创新方法在发电机创新设计中的应用[J]. 广东工业大学学报, 2020, 37(1): 1-6. LI Z H, YANG C Y, LI W J. An application of extension innovation method in generator innovation design [J]. Journal of Guangdong University of Technology, 2020, 37(1): 1-6. |
[1] | 张艳, 王军, 赵岩. 基于可拓网络图的设计方案智能化拓展及知识推理[J]. 广东工业大学学报, 2014, 31(4): 6-13. |
[2] | 罗珩; . 一种基于可拓推理的模糊控制专家系统[J]. 广东工业大学学报, 2003, 20(1): 89-94. |
[3] | 杜春彦; . 可拓推理[J]. 广东工业大学学报, 1999, 16(2): 107-110. |
|