广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (05): 52-58.doi: 10.12052/gdutxb.210005

• • 上一篇    下一篇

新型限力输出保护功能柔性夹钳的设计与参数评估

丁冰晓1, 李玄1, 路松2, 赵纪宇1   

  1. 1. 吉首大学 物理与机电工程学院,湖南 吉首 416000;
    2. 澳门大学 科技学院,中国 澳门 999078
  • 收稿日期:2021-01-12 出版日期:2021-09-10 发布日期:2021-07-13
  • 作者简介:丁冰晓(1989–),男,讲师,博士,主要研究方向为微定位平台的设计与控制
  • 基金资助:
    湖湘高层次人才聚集工程创新人才计划资助项目(2019RS1066);湖南省大学生创新创业训练项目(S202010531043)

Design and Parameter Evaluation of a Novel Type Flexible Gripper with Characteristic of Limited Output-force Protection

Ding Bing-xiao1, Li Xuan1, Lu Song2, Zhao Ji-yu1   

  1. 1. School of Physics and Electromechanical Engineering, Jishou University, Jishou 416000, China;
    2. Faculty of Science and Technology, University of Macau, Macau 999078, China
  • Received:2021-01-12 Online:2021-09-10 Published:2021-07-13

摘要: 柔性夹钳因具有微/纳精密操作能力, 常应用于微操作系统中, 但因抓爪无法提供恒定输出力或恒力范围小, 容易造成操作对象的损伤或脱落。根据放大模块与常力模块串联的结构形式, 设计了一种具有常力特性的柔性夹钳。基于伪刚体法, 建立放大模块中桥式机构与杠杆机构的刚度和放大率数学模型, 通过对倾斜导向梁进行分析, 得到常力模块的力-位移关系式, 计算出恒定输出力为42.5 N, 输出范围为370 μm。最后, 结合不同柔顺梁的结构参数, 运用MATLAB仿真探究了各关键参数对常力特性的影响。研究结果可为常力柔性夹钳的构型设计和分析提供一定的理论支撑。

关键词: 柔性夹钳, 常力机构, 倾斜导向梁, 双稳态机构

Abstract: Flexible grippers are widely used in micromanipulation system due to their capability of micro/nano resolution. However, it cannot avoid damaging the grasped object for the gripper cannot provide a constant output force or the limited range constant force. To solve these issues, a flexible gripper with constant force characteristic was designed based on an amplification module and a constant force module with series- structure. Based on the pseudo-rigid body method, the stiffness and magnification ratio model of the bridge type mechanism and the lever mechanism were established. The relationship between the force and displacement of the inclined guide beam was obtained with 42.5 N constant output force and 370 μm output range. Finally, the effect of each parameter on the constant force characteristics was analyzed with MATLAB. The research results can provide some theoretical guidance for the configuration design of flexible constant force grippers.

Key words: flexible gripper, constant force mechanism, inclined guide beam, bi-stable mechanism

中图分类号: 

  • TH112
[1] 丁严, 赖磊捷. 大行程无寄生位移柔性压电微夹钳结构设计[J]. 压电与声光, 2019, 41(4): 562-565.
DING Y, LAI L J. Structural design of flexible piezoelectric micro-gripper without parasitic displacement in large stroke [J]. Piezoeletrics & Acoustooptics, 2019, 41(4): 562-565.
[2] 张成, 褚金奎, 张然, 等. 柔性微夹钳的拓扑优化设计及制作工艺[J]. 机械设计与研究, 2010, 26(5): 44-46.
ZHANG C, CHU J K, ZHANG R, et al. Topology optimized design and microfabrication of compliant microgripper [J]. Machine Design and Research, 2010, 26(5): 44-46.
[3] MATTEO V, ALDEN D, NICOLA P B. A comprehensive survey on microgrippers design: mechanical structure [J]. Journal of Mechanical Design, 2017, 139(060801): 1-26.
[4] YANG Y L, WEI Y D, LOU J Q, et al. Design and control of a multi-DOF micromanipulator dedicated to multiscale micromanipulation [J]. Smart Materials and Structures, 2017, 26(11): 1-34.
[5] 余跃庆, 张志丹. 近似柔顺常力机构的研制及其实验研究[J]. 北京工业大学学报, 2018, 38(3): 321-324.
YU Y Q, ZHANG Z D. Experimental study on approximate compliant constant-force mechanisms [J]. Journal of Beijing University of Technology, 2018, 38(3): 321-324.
[6] XIE Y, SUN D, TSE H Y G, et al. Force and manipulation strategy in robot-assisted microinjection on zebrafish embryos [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(6): 1002-1010.
[7] ZHANG W, SOBOLEVSKL A, LI B, et al. An automated force-controlled robotic micromanipulation system for mechanotransduction studies of drosophila larvae [J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2): 789-797.
[8] 张凯, 韩迎鸽, 李保坤, 等. 基于附加弹簧双滑块四杆机构的柔顺恒力机构设计[J]. 机械传动, 2020, 44(4): 85-89.
ZHANG K, HAN Y G, LI B K, et al. Design of compliant constant-force mechanism based on additional spring double-slider four-bar mechanism [J]. Journal of Mechanical Transmission, 2020, 44(4): 85-89.
[9] CHEN Y H, LAN C C. An adjustable constant-force mechanism adaptive end-effector operations [J]. Journal of Mechanical Design, 2012, 134(031005): 1-9.
[10] 杨晓钧, 舒淦, 李兵. 含柔顺关节的空间RSSP常力机构建模与分析[J]. 浙江大学学报(工学版), 2018, 52(2): 261-261.
YANG X J, SHU G, LI B. Modeling and analysis of spatial RSSP constant-force mechanism with compliant joints [J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 261-261.
[11] 陈晓东, 邓子龙, 高兴军, 等. 基于细胞变换的柔性恒力机械手设计[J]. 机械传动, 2019, 43(12): 89-92.
CHEN X D, DENG Z L, GAO X J, et al. Design of flexible constant force manipulator based on metamorphic mechanism transform [J]. Journal of Mechanical Transmission, 2019, 43(12): 89-92.
[12] 李玄, 周双武, 路松, 等. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540.
LI X, ZHOU S W, LU S, et al. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism [J]. Chinese Journal of Engineering Design, 2020, 27(4): 533-540.
[13] 伍威, 赵纪宇, 丁冰晓, 等. 新型空间大行程微夹持器的设计与分析[J/OL]. 机械科学与技术,2020:1-8(2020-11-06)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200181.
WU W, ZHAO J Y, DING B X, et al. Design and analysis of a novel type of spatial micro-gripper with large displacement[[J/OL]. Mechanical Science and Technology for Aerospace Engineering, (2020-11-06)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200181.
[14] 张赢斌. 拓扑优化法设计恒力柔顺机构[D]. 西安: 西安电子科技大学, 2012.23-30.
[15] 时培成, 李云龙, 肖平, 等. 负刚度结构的座椅悬架优化及隔振分析[J/OL]. 机械科学与技术, 2020, 1-12(2020-05-07)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200054.
SHI P C, LI Y L, XIAO P, et al. Optimization and vibration isolation analysis of seat suspension with negative stiffness structure[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2020, 1-12(2020-05-07)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200054.
[16] WANG J Y, LAN C C. A constant-force compliant gripper for handling objects of various sizes [J]. Journal of Mechanical Design, 2014, 136(071008): 1-10.
[17] HAO G B, JOHN M, KWVIN C. Simplified modeling and development of a bi-directionally adjustable constant-force compliant gripper [J]. Journal of Mechanical Engineering Science, 2017, 231(11): 2110-2123.
[18] LIU Y L, ZHANG Y L, XU Q S. Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams [J]. IEEE/ASME Transaction on Mechatronics, 2017, 22(1): 476-486.
[19] WANG P Y, XU Q S. Design and modeling of constant-force mechanisms: a survey [J]. Mechanism and Machine Theory, 2018, 119: 1-21.
[20] ZHOU Z F, GAO Y Z, SUN L N, et al. A bistable mechanism with linear negative stiffness and large in-plane lateral stiffness: design, modeling and case studies [J]. Mechanical Sciences, 2020, 11(1): 75-89.
[21] WANG F J, ZHAO X L, HUO Z C, et al. A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism [J]. Mechanism and Machine Theory, 2020, 155(104066): 1-14.
[22] LINK M X, CAO J Y, JIANG Z, et al. Modular kinematics and statics modeling for precision positioning stage [J]. Mechanism and Machine Theory, 2017, 107: 274-282.
[23] HOLST G L, TEICHERTT G H, JENSEN B D. Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms [J]. Journal of Mechanical Design, 2011, 133(051002): 1-10.
[1] 张晓伟, 林秀君, 郑玲利, 潘继生, 唐文艳, 成思源. 平面机构自由度求解中低副高代去除轨迹点重合虚约束[J]. 广东工业大学学报, 2020, 37(02): 60-66.
[2] 张国英, 姜浩, 张涛, 肖才, 刘冠峰, 肖晓兰, 骆少明. 三自由度类球面并联机构的动力学建模及分析[J]. 广东工业大学学报, 2018, 35(06): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!