广东工业大学学报 ›› 2021, Vol. 38 ›› Issue (05): 52-58.doi: 10.12052/gdutxb.210005
丁冰晓1, 李玄1, 路松2, 赵纪宇1
Ding Bing-xiao1, Li Xuan1, Lu Song2, Zhao Ji-yu1
摘要: 柔性夹钳因具有微/纳精密操作能力, 常应用于微操作系统中, 但因抓爪无法提供恒定输出力或恒力范围小, 容易造成操作对象的损伤或脱落。根据放大模块与常力模块串联的结构形式, 设计了一种具有常力特性的柔性夹钳。基于伪刚体法, 建立放大模块中桥式机构与杠杆机构的刚度和放大率数学模型, 通过对倾斜导向梁进行分析, 得到常力模块的力-位移关系式, 计算出恒定输出力为42.5 N, 输出范围为370 μm。最后, 结合不同柔顺梁的结构参数, 运用MATLAB仿真探究了各关键参数对常力特性的影响。研究结果可为常力柔性夹钳的构型设计和分析提供一定的理论支撑。
中图分类号:
[1] 丁严, 赖磊捷. 大行程无寄生位移柔性压电微夹钳结构设计[J]. 压电与声光, 2019, 41(4): 562-565. DING Y, LAI L J. Structural design of flexible piezoelectric micro-gripper without parasitic displacement in large stroke [J]. Piezoeletrics & Acoustooptics, 2019, 41(4): 562-565. [2] 张成, 褚金奎, 张然, 等. 柔性微夹钳的拓扑优化设计及制作工艺[J]. 机械设计与研究, 2010, 26(5): 44-46. ZHANG C, CHU J K, ZHANG R, et al. Topology optimized design and microfabrication of compliant microgripper [J]. Machine Design and Research, 2010, 26(5): 44-46. [3] MATTEO V, ALDEN D, NICOLA P B. A comprehensive survey on microgrippers design: mechanical structure [J]. Journal of Mechanical Design, 2017, 139(060801): 1-26. [4] YANG Y L, WEI Y D, LOU J Q, et al. Design and control of a multi-DOF micromanipulator dedicated to multiscale micromanipulation [J]. Smart Materials and Structures, 2017, 26(11): 1-34. [5] 余跃庆, 张志丹. 近似柔顺常力机构的研制及其实验研究[J]. 北京工业大学学报, 2018, 38(3): 321-324. YU Y Q, ZHANG Z D. Experimental study on approximate compliant constant-force mechanisms [J]. Journal of Beijing University of Technology, 2018, 38(3): 321-324. [6] XIE Y, SUN D, TSE H Y G, et al. Force and manipulation strategy in robot-assisted microinjection on zebrafish embryos [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(6): 1002-1010. [7] ZHANG W, SOBOLEVSKL A, LI B, et al. An automated force-controlled robotic micromanipulation system for mechanotransduction studies of drosophila larvae [J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2): 789-797. [8] 张凯, 韩迎鸽, 李保坤, 等. 基于附加弹簧双滑块四杆机构的柔顺恒力机构设计[J]. 机械传动, 2020, 44(4): 85-89. ZHANG K, HAN Y G, LI B K, et al. Design of compliant constant-force mechanism based on additional spring double-slider four-bar mechanism [J]. Journal of Mechanical Transmission, 2020, 44(4): 85-89. [9] CHEN Y H, LAN C C. An adjustable constant-force mechanism adaptive end-effector operations [J]. Journal of Mechanical Design, 2012, 134(031005): 1-9. [10] 杨晓钧, 舒淦, 李兵. 含柔顺关节的空间RSSP常力机构建模与分析[J]. 浙江大学学报(工学版), 2018, 52(2): 261-261. YANG X J, SHU G, LI B. Modeling and analysis of spatial RSSP constant-force mechanism with compliant joints [J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 261-261. [11] 陈晓东, 邓子龙, 高兴军, 等. 基于细胞变换的柔性恒力机械手设计[J]. 机械传动, 2019, 43(12): 89-92. CHEN X D, DENG Z L, GAO X J, et al. Design of flexible constant force manipulator based on metamorphic mechanism transform [J]. Journal of Mechanical Transmission, 2019, 43(12): 89-92. [12] 李玄, 周双武, 路松, 等. 基于二级杠杆机构的二自由度微定位平台设计与分析[J]. 工程设计学报, 2020, 27(4): 533-540. LI X, ZHOU S W, LU S, et al. Design and analysis of two-DOF micro-positioning platform based on two-level lever mechanism [J]. Chinese Journal of Engineering Design, 2020, 27(4): 533-540. [13] 伍威, 赵纪宇, 丁冰晓, 等. 新型空间大行程微夹持器的设计与分析[J/OL]. 机械科学与技术,2020:1-8(2020-11-06)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200181. WU W, ZHAO J Y, DING B X, et al. Design and analysis of a novel type of spatial micro-gripper with large displacement[[J/OL]. Mechanical Science and Technology for Aerospace Engineering, (2020-11-06)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200181. [14] 张赢斌. 拓扑优化法设计恒力柔顺机构[D]. 西安: 西安电子科技大学, 2012.23-30. [15] 时培成, 李云龙, 肖平, 等. 负刚度结构的座椅悬架优化及隔振分析[J/OL]. 机械科学与技术, 2020, 1-12(2020-05-07)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200054. SHI P C, LI Y L, XIAO P, et al. Optimization and vibration isolation analysis of seat suspension with negative stiffness structure[J/OL]. Mechanical Science and Technology for Aerospace Engineering, 2020, 1-12(2020-05-07)[2021-01-12]. https://doi.org/10.13433/j.cnki.1003-8728.20200054. [16] WANG J Y, LAN C C. A constant-force compliant gripper for handling objects of various sizes [J]. Journal of Mechanical Design, 2014, 136(071008): 1-10. [17] HAO G B, JOHN M, KWVIN C. Simplified modeling and development of a bi-directionally adjustable constant-force compliant gripper [J]. Journal of Mechanical Engineering Science, 2017, 231(11): 2110-2123. [18] LIU Y L, ZHANG Y L, XU Q S. Design and control of a novel compliant constant-force gripper based on buckled fixed-guided beams [J]. IEEE/ASME Transaction on Mechatronics, 2017, 22(1): 476-486. [19] WANG P Y, XU Q S. Design and modeling of constant-force mechanisms: a survey [J]. Mechanism and Machine Theory, 2018, 119: 1-21. [20] ZHOU Z F, GAO Y Z, SUN L N, et al. A bistable mechanism with linear negative stiffness and large in-plane lateral stiffness: design, modeling and case studies [J]. Mechanical Sciences, 2020, 11(1): 75-89. [21] WANG F J, ZHAO X L, HUO Z C, et al. A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism [J]. Mechanism and Machine Theory, 2020, 155(104066): 1-14. [22] LINK M X, CAO J Y, JIANG Z, et al. Modular kinematics and statics modeling for precision positioning stage [J]. Mechanism and Machine Theory, 2017, 107: 274-282. [23] HOLST G L, TEICHERTT G H, JENSEN B D. Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms [J]. Journal of Mechanical Design, 2011, 133(051002): 1-10. |
[1] | 张晓伟, 林秀君, 郑玲利, 潘继生, 唐文艳, 成思源. 平面机构自由度求解中低副高代去除轨迹点重合虚约束[J]. 广东工业大学学报, 2020, 37(02): 60-66. |
[2] | 张国英, 姜浩, 张涛, 肖才, 刘冠峰, 肖晓兰, 骆少明. 三自由度类球面并联机构的动力学建模及分析[J]. 广东工业大学学报, 2018, 35(06): 24-30. |
|