广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (01): 56-62.doi: 10.12052/gdutxb.200176
杨积升, 章云, 李东
Yang Ji-sheng, Zhang Yun, Li Dong
摘要: 高精度的三维目标检测是实现物体感知的关键技术, 对自动驾驶、机器人控制等应用的落地具有重要意义。为提高三维目标检测的精度, 对算法VoteNet改进, 提出了一种基于残差网络的端到端的高精度三维点云目标检测网络ResVoteNet。具体来说, 设计了适用于点云数据的残差网络骨架, 提出了残差特征提取模块以及残差上采样模块, 并集成进VoteNet框架。残差网络结构的引入增强了网络对点云数据的特征提取和学习能力, 并且提高了模型的鲁棒性。该算法在公开的大规模点云数据集SCANNET和SUN-RGBD上进行实验, 平均检测精度mAP分别达到61.1%和59.9%, 超越了当前最先进水平的其他算法。
中图分类号:
[1] 王玺. 谷歌公布无人驾驶车事故细节未来交通尚仍是梦[J]. 华东科技, 2016, 4(1): 10-15. [2] YAN Y, MAO Y, LI B. Second: Sparsely embedded convolutional detection [J]. Sensors, 2018, 18(10): 3337. [3] LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12697-12705. [4] 杨泽鑫, 彭林才, 刘定宁, 等. 基于PCL和Qt的点云处理系统设计与开发[J]. 广东工业大学学报, 2017, 34(6): 61-67. YANG Z X, PENG L C, LIU D N, et al. Development of point cloud processing system based on PCL and Qt [J]. Journal of Guangdong University of Technology, 2017, 34(6): 61-67. [5] ZHOU Y, TUZEL O. Voxelnet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4490-4499. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [7] QI C R, LIU W, WU C, et al. Frustum pointnets for 3D object detection from RGB-D data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 918-927. [8] QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 652-660. [9] QI C R, LITANY O, HE K, et al. Deep hough voting for 3D object detection in point clouds[C]//Proceedings of the IEEE International Conference on Computer Vision. Long Beach: IEEE, 2019: 9277-9286. [10] SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10529-10538. [11] LIU Z, ZHAO X, HUANG T, et al. TANet: robust 3D object detection from point clouds with triple attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 11677-11684. [12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [13] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. [14] DAI A, CHANG A X, SAVVA M, et al. Scannet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5828-5839. [15] SONG S, LICHTENBERG S P, XIAO J. Sun RGB-D: a RGB-D scene understanding benchmark suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 567-576. [16] SONG S, XIAO J. Deep sliding shapes for a modal 3D object detection in RGB-D images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 808-816. [17] HOU J, DAI A, NIEBNER M. 3D-SIS: 3D semantic instance segmentation of RGB-D scans[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4421-4430. [18] LAHOUD J, GHANEM B. 2D-driven 3D object detection in RGB-D images[C]//Proceedings of the IEEE International Conference on Computer Vision. Honolulu: IEEE, 2017: 4622-4630. [19] REN Z, SUDDERTH E B. Three-dimensional object detection and layout prediction using clouds of oriented gradients[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1525-1533. [20] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Honolulu: IEEE, 2017: 2961-2969. [21] YI L, ZHAO W, WANG H, et al. GSPN: generative shape proposal network for 3D instance segmentation in point cloud[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3947-3956. [22] QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space [J]. Advances in Neural Information Processing Systems, 2017, 30: 5099-5108. |
[1] | 谢国波, 林立, 林志毅, 贺笛轩, 文刚. 基于YOLOv4-MP的绝缘子爆裂缺陷检测方法[J]. 广东工业大学学报, 2023, 40(02): 15-21. |
[2] | 张国生, 冯广, 李东. 基于姿态表示的航空影像旋转目标检测网络[J]. 广东工业大学学报, 2021, 38(05): 40-47. |
[3] | 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(04): 52-58. |
[4] | 谢岩, 刘广聪. 基于编解码器模型的车道识别与车辆检测算法[J]. 广东工业大学学报, 2019, 36(04): 36-41. |
[5] | 陈世文1, 2, 蔡念2, 肖明明3. 基于高斯混合模型和canny算法的运动目标检测[J]. 广东工业大学学报, 2011, 28(3): 87-91. |
[6] | 梁志勇; 易珺; 唐平; 刘文娟; . 帧差法在仓库监控智能跟踪系统中的应用[J]. 广东工业大学学报, 2005, 22(1): 47-52. |
|