广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (05): 93-101.doi: 10.12052/gdutxb.220074

• • 上一篇    下一篇

模型预测控制下多移动机器人的跟踪与避障

彭积广, 肖涵臻   

  1. 广东工业大学 自动化学院,广东 广州 510006
  • 收稿日期:2022-04-02 发布日期:2022-07-18
  • 通信作者: 肖涵臻(1991–),男,讲师,博士,硕士生导师,主要研究方向为智能移动机器人控制、多智能体编队,E-mail:xiaohanzhen77@foxmail.com
  • 作者简介:彭积广(1996–),男,硕士研究生,主要研究方向为多移动机器人协同控制
  • 基金资助:
    国家自然科学基金青年基金资助项目(62003092)

Tracking and Obstacle Avoidance of Multi-mobile Robots Under Model Predictive Control

Peng Ji-guang, Xiao Han-zhen   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-04-02 Published:2022-07-18

摘要: 提出了一种基于距离和速度的机器人之间的避障方法,通过与机器人避开障碍物的人工势场法相结合,建立一致性控制编队控制协议。首先,建立机器人之间的通信拓扑关系,以便机器人之间的信息交流。在编队控制层面上,设计具有避碰的编队控制律。然后,在编队跟踪层面上,运用模型预测控制方法,将编队误差运动问题按代价函数转化为最小优化问题。为了在线高效地求解该优化问题,运用了一种广义投影神经网络优化的方法,以便最优解作为控制输入。最后,对多移动机器人编队进行了仿真,验证了所提出策略的有效性。

关键词: 人工势场法, 模型预测控制, 多机器人编队控制, 广义投影神经网络

Abstract: Aiming to control the formation tracking and obstacle avoidance system of multi-mobile robots under the changing topology, an obstacle avoidance method based on distance and speed between robots and an artificial potential field method to avoid obstacles are proposed to establish a consistent control formation control protocol. Firstly, the communication topology between robots is established to facilitate the information exchange between robots. At the level of formation control, a formation control law with collision avoidance is designed. Then, at the level of formation tracking, the formation error motion problem is transformed into a minimum optimization problem according to the cost function by using model predictive control method. In order to efficiently solve the optimization problem online, a generalized projection neural network optimization method is used, in which the optimal solution is used as the control input. Finally, the simulation of multi-mobile robot formation verifies the effectiveness of the proposed strategy.

Key words: artificial potential field method, model predictive control (MPC), multi-robot formation control, general projection neural network (GPNN).

中图分类号: 

  • TG156
[1] WANG X, LI S, SHI P. Distributed finite-time containment control for double-integrator multiagent systems [J]. IEEE Transactions on Cybernetics, 2014, 44(9): 1518-1528.
[2] LI S, WANG X. Finite-time consensus and collision avoidance control algorithms for multiple AUVs [J]. Automatica, 2013, 49(11): 3359-3367.
[3] LI S, DU H, LIN X. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics [J]. Automatica, 2011, 47(8): 1706-1712.
[4] XIAO H Z, LI Z, CHEN C L P. Formation control of leader-follower mobile robots’ systems using model predictive control based on neural-dynamic optimization [J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5752-5762.
[5] PANG Z H, ZHENG C B, SUN J, et al. Distance- and velocity-based collision avoidance for time-varying formation control of second-order multi-agent systems [J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(4): 1253-1257.
[6] WEN G, CHEN C L P, LIU Y J, et al. Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems [J]. IEEE Transactions on Cybernetics, 2016, 47(8): 2151-2160.
[7] REN C E, CHEN L, CHEN C L P. Adaptive fuzzy leader-following consensus control for stochastic multiagent systems with heterogeneous nonlinear dynamics [J]. IEEE Transactions on Fuzzy Systems, 2016, 25(1): 181-190.
[8] LI D P, LIU Y J, TONG S, et al. Neural networks-based adaptive control for nonlinear state constrained systems with input delay [J]. IEEE Transactions on Cybernetics, 2018, 49(4): 1249-1258.
[9] REN C E, CHEN C L P. Sliding mode leader-following consensus controllers for second-order non-linear multi-agent systems[J]. IET Control Theory and Applications, 20-15, 9(10): 1544-1552.
[10] NAIR R R, KARKI H, SHUKLA A, et al. Fault-tolerant formation control of nonholonomic robots using fast adaptive gain nonsingular terminal sliding mode control [J]. IEEE System Journal, 2019, 13(1): 1006-1017.
[11] RANJBAR-SAHRAEI B, SHABANINIA F, NEMATI A, et al. A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems [J]. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3124-3134.
[12] MANTOVANI G, FERRARINI L. Temperature control of a commercial building with model predictive control techniques [J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2651-2660.
[13] LU X, CHEN H, GAO B, et al. Data-driven predictive gearshift control for dual-clutch transmissions and FPGA implementation [J]. IEEE Transactions on Industrial Electronics, 2014, 62(1): 599-610.
[14] XIAO H Z, CHEN C L P. Time-varying nonholonomic robot consensus formation using model predictive based protocol with switching topology [J]. Information Sciences, 2021, 567: 201-215.
[15] DAI L, CAO Q, XIA Y Q, et al. Distributed MPC for formation of multi-agent systems with collision avoidance and obstacle avoidance [J]. Journal of the Franklin Institute, 2017, 354(4): 2068-2085.
[16] SEO J, KIM Y, KIM S, et al. Collision avoidance strategies for unmanned aerial vehicles in formation flight [J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2718-2734.
[17] HE S, WANG M, DAI S L, et al. Leader-follower formation control of USVs with prescribed performance and collision avoidance [J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 572-581.
[18] ZHOU X, YU X, PENG X. UAV collision avoidance based on varying cells strategy [J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1743-1755.
[19] SHI Q, LI T, LI J, et al. Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems [J]. Neurocomputing, 2019, 350: 282-290.
[20] PENG Z, WANG D, LI T, et al. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance [J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2527-2535.
[21] XIAO H Z, CHEN C L P, YU D X. Two-level structure swarm formation system with self-organized topology network [J]. Neurocomputing, 2020, 384: 356-367.
[1] 杨翊卓, 代伟. 事件触发机制下的工业过程多速率模型预测控制方法[J]. 广东工业大学学报, 2022, 39(05): 68-74.
[2] 黎耀东, 任志刚, 吴宗泽. 基于深度神经网络的注塑过程预测控制[J]. 广东工业大学学报, 2022, 39(05): 120-126,136.
[3] 梁嘉俊, 曾碧, 何元烈. 基于改进势场栅格法的清洁机器人路径规划算法研究[J]. 广东工业大学学报, 2016, 33(04): 30-36.
[4] 马静; 胡玉娥; 詹习生; . 基于模型预测的迭代学习控制器设计[J]. 广东工业大学学报, 2006, 23(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!