广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (01): 113-121.doi: 10.12052/gdutxb.210192

• • 上一篇    下一篇

天然气掺氢燃烧技术在旋流式燃气灶上的数值模拟研究

刘效洲, 朱睿, 朱光羽   

  1. 广东工业大学 材料与能源学院,广东 广州 510006
  • 收稿日期:2021-12-06 出版日期:2023-01-25 发布日期:2023-01-12
  • 作者简介:刘效洲(1971-),男,教授级高级工程师,博士,主要研究方向为燃烧污染物生成机理和先进燃烧技术,E-mail:liuzhang852@163.com
  • 基金资助:
    广州市科技计划产学研协同创新重大专项(201604016024)

Numerical Simulation and Experimental Research of Methane-hydrogen Combustion Technology on Swirl Gas Stove

Liu Xiao-zhou, Zhu Rui, Zhu Guang-yu   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-12-06 Online:2023-01-25 Published:2023-01-12

摘要: 为研究天然气掺氢后在家用燃气灶上的燃烧特性变化,将天然气掺氢燃烧技术应用于家用旋流式燃气灶上,进行数值模拟和热态实验。首先对详细燃烧机理GRI-Mech 3.0进行了简化,通过对比验证,简化机理与详细机理的计算误差小于1%。然后使用简化机理进行燃气灶的数值模拟,将数值模拟与热态实验计算结果进行对比分析,发现燃烧区域平均温度的最大误差不超过12%,证实了数值模拟的可行性。最后进行了天然气掺氢工况的数值模拟,结果表明家用燃气灶的一次空气系数随着掺氢体积分数的提高逐渐上升,对燃烧特性影响较大。同时,掺入体积分数15%的氢气后,CO排放的摩尔分数降低了约9%;燃烧区域平均温度基本保持稳定,证实了天然气掺氢技术的有效性。研究成果为天然气掺氢燃烧技术在燃气灶上的推广应用提供参考。

关键词: 旋流燃气灶, 天然气掺氢技术, 数值模拟, 热态实验, CO排放

Abstract: In order to study the changes of combustion characteristics of domestic gas stoves after mixing natural gas with hydrogen, numerical simulation and thermal experiment research are carried out on the application of natural gas hydrogen-mixing combustion technology in household swirl gas stoves. First, the detailed mechanism GRI-Mech 3.0 is simplified. Through comparison and verification, the error between the simplified mechanism and the original mechanism is less than 1%. Secondly, using simplified mechanism for numerical simulation of pure methane gas stove, the numerical simulation and thermal experimental calculation results are compared and verified. It is found that the maximum error of the average temperature of the combustion zone does not exceed 12%, which confirms the feasibility of the simulation. Finally, a numerical simulation study of methane hydrogen mixing conditions is carried out. The calculation results show that the primary air coefficient of domestic gas stoves gradually increases with the increase of the hydrogen mixing ratio, which has a great influence on the combustion characteristics. After adding 15% of the volume of hydrogen, CO emissions are reduced by about 9%; and the temperature remains basically stable, which confirms the effectiveness of methane hydrogenation technology. The research results have reference value for the popularization and application of natural gas mixed with hydrogen in the combustion of gas stoves.

Key words: swirl gas stove, natural gas hydrogenation technology, numerical simulation, thermal experiment, CO emissions

中图分类号: 

  • TQ038
[1] 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展[J]. 天然气工业, 2021, 41(2): 171-182.
ZHOU S H, WANG J, LIANG Y. Development of China's natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 171-182.
[2] 张世红, 彭笑, 颜龙飞. 家用天然气燃气灶在不同火焰燃烧工况下的烟气污染物[J]. 化工进展, 2012(S2): 234-238.
ZHANG S H, PENG X, YAN L F. Research on exhaust gas pollutant emissions under the conditions of different flame combustion of natural gas [J]. Chemical Industry and Engineering Progress, 2012(S2): 234-238.
[3] MEJIA A H, BROUWER J, KINNON M M. Hydrogen leaks at the same rate as natural gas in typical low-pressure gas infrastructure[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8810-8826.
[4] DADFARNIA M, SOFRONIS P, BROUWER J, et al. Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen [J]. International Journal of Hydrogen Energy, 2019, 44(21): 10808-10822.
[5] International Energy Agency. The future of hydrogen: seizing today's opportunities[EB/OL]. (2019-06-14) [2020-05-24]. https://www.iea.org/reports/the-future-of-hydrogen.
[6] HAESELDONCKX D, D'HAESELEER W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure [J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1381-1386.
[7] ZHAO Y, MCDONELL V, SAMUELSEN S. Experimental assessment of the combustion performance of an oven burner operated on pipeline natural gas mixed with hydrogen [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26049-26062.
[8] 罗子萱. 徐华池, 袁满. 天然气掺混氢气在家用燃气具上燃烧的安全性及排放性能测试与评价[J]. 石油与天然气化工, 2019, 48(2): 50-56.
LUO Z X, XU H C, YUAN M. Safety and emission performance test and evaluation of naturalgas mixed with hydrogen combustion on domestic gas appliances [J]. Chemical Engineering of Oil & Gas, 2019, 48(2): 50-56.
[9] ZHAO Y, MCDONELL V, SAMUELSEN S. Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner [J]. International Journal of Hydrogen Energy, 2019, 44(23): 12239-12253.
[10] 侯金丽, 金平, 蔡国飙. 基于敏感性分析的氧/甲烷燃烧反应简化机理[J]. 航空动力学报, 2012, 27(7): 1549-1554.
HOU J L, JIN P, CAI G B. Reduced mechanism for oxygen/ methane combustion based on sensitivity analysis [J]. Journal of Aerospace Power, 2012, 27(7): 1549-1554.
[11] 江冰, 季强, 赵昌普, 等. 甲烷/空气燃烧简化机理及其应用[J]. 河南科技大学学报(自然科学版), 2016, 37(3): 24-28.
JIANG B, JI Q, ZHAO C P, et al. Reduced mechanism and application of methane /air combustion [J]. Journal of Henan University of Science and Technology (Natural Science), 2016, 37(3): 24-28.
[12] LU T F. LAW C K. A directed relation graph method for mechanism reduction [J]. Proceedings of the Combustion Institute, 2005, 30(1): 1333-1341.
[13] LU T F, LAW C K. Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane [J]. Combustion and Flame, 2006, 144(1/2): 24-36.
[14] POON H M, NG H K, GAN S, et al. Evaluation and development of chemical kinetic mechanism reduction scheme for biodiesel and diesel fuel surrogates [J]. SAE International Journal of Fuels and Lubricants, 2013, 6(3): 729-744.
[15] LUO D D, ZHEN H S, LEUNG C W. et al Premixed flame impingement heat transfer with induced swirl [J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4333-4336.
[16] HINDASAGERI V, KUNTIKANA P, VEDULA R P, et al. An experimental and numerical investigation of heat transfer distribution of perforated plate burner flames impinging on a flat plate [J]. International Journal of Thermal Sciences, 2015, 94: 156-169.
[17] SMITH G P , GOLDEN D M, FRENKLACH M, et al. GRI-Mech Home Page[EB/OL]. http://www.me.berkeley.edulgri_mech/.
[18] 金亮, 周劲松, 吴远谋, 等. 下吸式生物质气化炉气化性能研究[J]. 热能动力工程, 2011, 26(1): 105-109.
JIN L, ZHOU J S, WU Y M, et al. Study of the gasification performance of a downdraft type biomass gasifierr [J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(1): 105-109.
[19] 郑航飞. 燃气灶热损失的实验分析与高效燃气灶研发[D]. 武汉: 华中科技大学, 2018.
[20] 吴嫦. 天然气掺混氢气使用的可行性研究[D]. 重庆: 重庆大学, 2018.
[21] 马向阳, 黄小美, 吴嫦. 天然气掺氢对家用燃气灶燃烧特性的影响研究[J]. 可再生能源, 2018,36(12): 1746-1751.
MA X Y, HUANG X M, WU C. Study on the influence of natural gas hydrogenation on combustion characteristics of domestic gas cooker [J]. Renewable Energy Resources, 2018,36(12): 1746-1751.
[1] 邹翀, 唐雄民, 陈伟正, 江天鸿, 方文睿. 脉冲电流源作用下大气压介质阻挡放电的特性分析[J]. 广东工业大学学报, 2022, 39(04): 36-45.
[2] 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97.
[3] 刘效洲, 朱光羽. 循环流化床锅炉风室内流动特性及优化研究[J]. 广东工业大学学报, 2022, 39(03): 116-124.
[4] 李宇航, 高振宇, 杨雪强, 刘攀. 静压钢板桩贯入阻力试验与数值仿真[J]. 广东工业大学学报, 2022, 39(01): 129-134.
[5] 罗钧午, 李冬梅, 梁帅, 王帅超, 肖曙红. 十字交叉型微通道内液滴形成的数值模拟研究[J]. 广东工业大学学报, 2020, 37(05): 68-74.
[6] 甘阳阳, 李志生. 空气幕对厨房内PM2.5控制效果的模拟与分析[J]. 广东工业大学学报, 2020, 37(03): 82-87.
[7] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
[8] 吴成赫, 刘丽孺, 陈毅刚, 王璋元. 旋转集热板式太阳能烟囱性能研究[J]. 广东工业大学学报, 2018, 35(05): 70-74.
[9] 赵冰春, 汪新, 赖志平. 居住小区布局形式对热环境的影响[J]. 广东工业大学学报, 2016, 33(06): 91-95.
[10] 王长宏, 黄炯桐, 曾文强. 高熔点钢板电阻点焊电极传热特性数值模拟与分析[J]. 广东工业大学学报, 2016, 33(03): 6-10.
[11] 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94.
[12] 杨艺. 海水太阳池非稳态热质传递有限容积法模型[J]. 广东工业大学学报, 2015, 32(2): 120-125.
[13] 赖志平, 汪新. 某会展中心建筑表面风压分布的数值模拟[J]. 广东工业大学学报, 2014, 31(2): 78-84.
[14] 张雅宁, 杨春山, 刘锦伟, 何娜. 基坑开挖对既有桥梁桩基的数值分析[J]. 广东工业大学学报, 2014, 31(1): 107-111.
[15] 杨春山, 何娜, 张雅宁. 考虑渗流-应力耦合基坑开挖降水数值分析[J]. 广东工业大学学报, 2013, 30(4): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!