广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 95-105.doi: 10.12052/gdutxb.230132

• 催化与能源材料 • 上一篇    下一篇

木质素磺酸钠衍生S/N共掺杂电催化剂结构调控与OER性能研究

王晓菲1,2, 薛李静2, 周海潮2, 林绪亮1,2,3, 邱学青1,2   

  1. 1. 化学与精细化工广东省实验室 揭阳分中心, 广东 揭阳 515200;
    2. 广东工业大学 轻工化工学院, 广东 广州 510006;
    3. 广东工业大学 广东省植物资源生物炼制重点实验室, 广东 广州 510006
  • 收稿日期:2023-09-02 出版日期:2023-11-25 发布日期:2023-11-08
  • 通信作者: 林绪亮(1988-),男,副教授,博士,主要研究方向为木质素碳基功能材料及其应用,E-mail:xllin@gdut.edu.cn;邱学青(1965-),男,教授,博士,主要研究方向为木质素高值化利用,E-mail:qxq@gdut.edu.cn
  • 作者简介:王晓菲(1991-),女,助理研究员,博士,主要研究方向为木质素高效催化转化
  • 基金资助:
    国家自然科学基金资助项目(22038004, 22178069);广东省重点领域研发计划项目(2020B1111380002)

Structure Engineering of Lignosulfonate-derived S/N Co-doped Catalyst for Electrocatalytic OER Performance

Wang Xiao-fei1,2, Xue Li-jing2, Zhou Hai-chao2, Lin Xu-liang1,2,3, Qiu Xue-qing1,2   

  1. 1. Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China;
    2. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
    3. Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-09-02 Online:2023-11-25 Published:2023-11-08

摘要: 析氧反应(Oxygen Evolution Reaction, OER)是电催化水分解能源转化过程的核心与速控步骤,较高的反应能垒导致动力学缓慢,限制了整体效率。本文基于可再生的木质素磺酸钠原料,依次采用氧化氨解、配位自组装、原位碳化制备了双金属硫化物Co9S8-Ni3S2/SN-C催化剂,表现出优异的电催化OER性能。结合全面表征明确了氧化氨解得到的酰胺基团改性木质素磺酸钠与金属间的络合结构,并揭示了前驱体在热解碳化过程中的结构演变机制,以及活性中心Co9S8-Ni3S2的形成过程。在改性木质素衍生碳的强结合作用下,金属分散度提高。Co9S8-Ni3S2二者的紧密作用以及N对碳载体的缺陷掺杂,有效调控催化剂表面电子结构,优化中间体的吸附,进而提升了电催化OER反应性能。当氧化氨解过程中m(H2O2)/m(LS) = 1.5时,Co9S8-Ni3S2/SN-C催化剂的OER活性最高,在50 mA·cm?2的电流密度下,相比商业催化剂Ru/C(420 mV)具有更低的过电位(350 mV)。该工作为木质素碳材料的定向调控以及高效稳定OER电催化剂的开发提供了新思路。

关键词: 木质素, 氧化氨解, 电解水, 析氧反应, 过渡金属硫化物

Abstract: Oxygen evolution reaction (OER) is a core and rate-control process for the electrocatalytic water splitting. Due to the high energy barrier, the OER kinetics and overall water splitting efficiency are limited. Herein, bimetallic sulfide Co9S8-Ni3S2/SN-C catalyst was successfully prepared via oxidative ammonolysis of renewable lignosulfonates, and showed excellent electrocatalytic OER performance. The complex structure of sodium lignosulfonate modified with NHCO groups was investigated by comprehensive characterization, and the structural evolution mechanism of the precursor during pyrolysis and carbonization was revealed, with the formation of the active center Co9S8-Ni3S2 revealed as well. The strong binding of the modified lignin-carbon with metals enhanced the dispersion of active sites Co9S8 and Ni3S2. The close interaction between Co9S8-Ni3S2 and the defect doping of N onto the carbon carrier effectively regulated the surface electronic structure, and optimized the adsorption of the reaction intermediate, and thus improved the electrochemical OER reaction performance. The OER activity of Co9S8-Ni3S2/SN-C catalyst reached the highest level when m(H2O2)/m(LS) = 1.5 for oxidative ammonolysis, and showed a lower overpotential (350 mV) than that of commercial Ru/C catalyst (420 mV) at a current density of 50 mA·cm?2. This work provides an insight into the directional regulation of lignin-based functional materials and its development for highly efficient and stable OER electrocatalysis.

Key words: lignin, oxidative ammonolysis, electrocatalytic water splitting, oxygen evolution reaction, transition metallic sulfide

中图分类号: 

  • TQ151
[1] YOU B, SUN Y J. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51: 1571-1580.
[2] WAN L, XU Z, XU Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis[J]. Energy & Environmental Science, 2023, 16: 1384-1430.
[3] SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32: 1806326.
[4] SUN H N, XU X M, KIM H S, et al. Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications[J]. Energy & Environmental Materials, 2022, 6: e12441.
[5] WANG L X, HUANG J, HUANG Z Y, et al. Revealing dynamic structural evolution of V and P co-doping-induced Co defects as large-current water oxidation catalyst[J]. Chemical Engineering Journal, 2023, 472: 144924.
[6] SU H, SONG S J, LI S S, et al. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2021, 293: 120225.
[7] CUI M J, YANG C P, LI B Y, et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction[J]. Advanced Energy Materials, 2021, 11: 2002887.
[8] XIE H, FENG Y F, HE X Y, et al. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis[J]. Small, 2023, 19: 2207425.
[9] WU L, SHEN X P, JI Z Y, et al. Facile synthesis of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution reaction[J]. Advanced Functional Materials, 2023, 33: 2208170.
[10] CHEN Y T, ZHANG X Y, MA X S, et al. Modulation of bulk and surface electronic structures for oxygen evolution by Cr, P co-doped Co3S4[J]. Chemical Communications, 2023, 59: 7775-7778.
[11] WU X F, SONG X L, TAN H F, et al. Deciphering the structure evolution and active origin for electrochemical oxygen evolution over Ni3S2[J]. Materials Today Energy, 2022, 26: 101008.
[12] CHEN F Y, WU Z Y, ADLER Z C, et al. Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design[J]. Joule, 2021, 5: 1704-1731.
[13] QI Y F, LI J, ZHANG Y Q, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway[J]. Applied Catalysis B Environmental, 2021, 286: 119910.
[14] LIN X L, LIU J L, WU L J, et al. In situ coupling of lignin-derived carbon-encapsulated CoFe-CoxN heterojunction for oxygen evolution reaction[J]. AIChE Journal, 2022, 68: e17785.
[15] LIU Y Z, DEAK N, WANG Z W, et al. Tunable and functional deep eutectic solvents for lignocellulose valorization[J]. Nature Communications, 2021, 12: 5424.
[16] LIU Q J, TANG J P, LI X, et al. Effect of lignosulfonate on the adsorption performance of hematite for Cd(II)[J]. Science of the Total Environment, 2020, 738: 139952.
[17] FEI X, XU Q Z, XUE L J, et al. Aqueous phase catalytic conversion of ethanol to higher alcohols over NiSn bimetallic catalysts encapsulated in nitrogen-doped biorefinery lignin-based carbon[J]. Industrial & Engineering Chemistry Research, 2021, 60: 17959-17969.
[18] PANG J, ZHANG W F, ZHANG J L, et al. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities[J]. Green Chemistry, 2017, 19: 3916-3926.
[19] LIU Y B, HUANG G X, LI Y Y, et al. N-O-S Co-doped hierarchical porous carbons derived from calcium lignosulfonate for high-performance supercapacitors[J]. Energy Fuels, 2020, 34: 3909-3922.
[20] CHEN X Y, ZHOU Q Q. The production of porous carbon from calcium lignosulfonate without activation process and the capacitive performance[J]. Electrochimica Acta, 2012, 71: 92-99.
[21] MINH T D, NCIBI M C, CERTENAIS M, et al. Cobalt-lignosulfonate complex derived non-noble catalysts: facile valorization for high-performance redox conversion of organic pollutants[J]. Journal of Cleaner Production, 2020, 253: 120013.
[22] YAN L, WANG H Y, SHEN J L, et al. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting[J]. Chemical Engineering Journal, 2021, 403: 126385.
[23] ZHOU Q X, HOU S Y, CHENG Y X, et al. Interfacial engineering Co and MnO within N, S co-doped carbon hierarchical branched superstructures toward high-efficiency electrocatalytic oxygen reduction for robust Zn-air batteries[J]. Applied Catalysis B: Environmental, 2021, 295: 120281.
[24] SUN Y, WANG J, QI Y F, et al. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: promising for H2 production under Industrial-level current density[J]. Advanced Science, 2022, 9: e2200957.
[25] JIA X, KANG H J, YANG X X, et al.Amorphous Ni(Ⅲ) -based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water[J]. Applied Catalysis B: Environmental, 2022, 312: 121389.
[26] XU F, WANG J L, ZHANG Y X, et al. Structure-engineered bifunctional oxygen electrocatalysts with Ni3S2 quantum dot embedded S/N-doped carbon nanosheets for rechargeable Zn-air batteries[J]. Chemical Engineering Journal, 2022, 432: 134256.
[27] LONG Y K, LI S, SU Y P, et al. Sulfur-containing iron nanocomposites confined in S/N co-doped carbon for catalytic peroxymonosulfate oxidation of organic pollutants: low iron leaching, degradation mechanism and intermediates[J]. Chemical Engineering Journal, 2021, 404: 126499.
[28] RAO P, LIU Y L, SU Y Q, et al. S, N co-doped carbon nanotube encased Co NPs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries[J]. Chemical Engineering Journal, 2021, 422: 130135.
[29] PEI L, ZHONG J S, LI T Z, et al. CoS2@N-doped carbon core-shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation[J]. Journal of Materials Chemistry A, 2020, 8: 6795-6803.
[30] ZHAO C X, LIU J N, WANG C D, et al. An anionic regulation mechanism for the structural reconstruction of sulfide electrocatalysts under oxygen evolution conditions[J]. Energy & Environmental Science, 2022, 15: 3257-3264.
[1] 罗朝兵, 李海潮, 游婷婷, 许凤. 木质素低共熔溶剂分离、功能材料制备及应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 1-13.
[2] 马明国, 袁琪. 基于木质素的多功能材料应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 14-20,62.
[3] 郝艳平, 罗通, 吕高金, 王超, 周昊, 杨桂花, 陈嘉川. 木质素基可降解复合膜材料的研究进展[J]. 广东工业大学学报, 2022, 39(01): 21-33.
[4] 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134.
[5] 郭鹏; 陈敏; 陈中豪; . 高效降解木质素优势混合菌的诱变选育研究[J]. 广东工业大学学报, 1997, 14(4): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!