广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (06): 95-105.doi: 10.12052/gdutxb.230132
王晓菲1,2, 薛李静2, 周海潮2, 林绪亮1,2,3, 邱学青1,2
Wang Xiao-fei1,2, Xue Li-jing2, Zhou Hai-chao2, Lin Xu-liang1,2,3, Qiu Xue-qing1,2
摘要: 析氧反应(Oxygen Evolution Reaction, OER)是电催化水分解能源转化过程的核心与速控步骤,较高的反应能垒导致动力学缓慢,限制了整体效率。本文基于可再生的木质素磺酸钠原料,依次采用氧化氨解、配位自组装、原位碳化制备了双金属硫化物Co9S8-Ni3S2/SN-C催化剂,表现出优异的电催化OER性能。结合全面表征明确了氧化氨解得到的酰胺基团改性木质素磺酸钠与金属间的络合结构,并揭示了前驱体在热解碳化过程中的结构演变机制,以及活性中心Co9S8-Ni3S2的形成过程。在改性木质素衍生碳的强结合作用下,金属分散度提高。Co9S8-Ni3S2二者的紧密作用以及N对碳载体的缺陷掺杂,有效调控催化剂表面电子结构,优化中间体的吸附,进而提升了电催化OER反应性能。当氧化氨解过程中m(H2O2)/m(LS) = 1.5时,Co9S8-Ni3S2/SN-C催化剂的OER活性最高,在50 mA·cm?2的电流密度下,相比商业催化剂Ru/C(420 mV)具有更低的过电位(350 mV)。该工作为木质素碳材料的定向调控以及高效稳定OER电催化剂的开发提供了新思路。
中图分类号:
[1] YOU B, SUN Y J. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51: 1571-1580. [2] WAN L, XU Z, XU Q, et al. Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis[J]. Energy & Environmental Science, 2023, 16: 1384-1430. [3] SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32: 1806326. [4] SUN H N, XU X M, KIM H S, et al. Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications[J]. Energy & Environmental Materials, 2022, 6: e12441. [5] WANG L X, HUANG J, HUANG Z Y, et al. Revealing dynamic structural evolution of V and P co-doping-induced Co defects as large-current water oxidation catalyst[J]. Chemical Engineering Journal, 2023, 472: 144924. [6] SU H, SONG S J, LI S S, et al. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2021, 293: 120225. [7] CUI M J, YANG C P, LI B Y, et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction[J]. Advanced Energy Materials, 2021, 11: 2002887. [8] XIE H, FENG Y F, HE X Y, et al. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis[J]. Small, 2023, 19: 2207425. [9] WU L, SHEN X P, JI Z Y, et al. Facile synthesis of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution reaction[J]. Advanced Functional Materials, 2023, 33: 2208170. [10] CHEN Y T, ZHANG X Y, MA X S, et al. Modulation of bulk and surface electronic structures for oxygen evolution by Cr, P co-doped Co3S4[J]. Chemical Communications, 2023, 59: 7775-7778. [11] WU X F, SONG X L, TAN H F, et al. Deciphering the structure evolution and active origin for electrochemical oxygen evolution over Ni3S2[J]. Materials Today Energy, 2022, 26: 101008. [12] CHEN F Y, WU Z Y, ADLER Z C, et al. Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design[J]. Joule, 2021, 5: 1704-1731. [13] QI Y F, LI J, ZHANG Y Q, et al. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: role of single cobalt and electron transfer pathway[J]. Applied Catalysis B Environmental, 2021, 286: 119910. [14] LIN X L, LIU J L, WU L J, et al. In situ coupling of lignin-derived carbon-encapsulated CoFe-CoxN heterojunction for oxygen evolution reaction[J]. AIChE Journal, 2022, 68: e17785. [15] LIU Y Z, DEAK N, WANG Z W, et al. Tunable and functional deep eutectic solvents for lignocellulose valorization[J]. Nature Communications, 2021, 12: 5424. [16] LIU Q J, TANG J P, LI X, et al. Effect of lignosulfonate on the adsorption performance of hematite for Cd(II)[J]. Science of the Total Environment, 2020, 738: 139952. [17] FEI X, XU Q Z, XUE L J, et al. Aqueous phase catalytic conversion of ethanol to higher alcohols over NiSn bimetallic catalysts encapsulated in nitrogen-doped biorefinery lignin-based carbon[J]. Industrial & Engineering Chemistry Research, 2021, 60: 17959-17969. [18] PANG J, ZHANG W F, ZHANG J L, et al. Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities[J]. Green Chemistry, 2017, 19: 3916-3926. [19] LIU Y B, HUANG G X, LI Y Y, et al. N-O-S Co-doped hierarchical porous carbons derived from calcium lignosulfonate for high-performance supercapacitors[J]. Energy Fuels, 2020, 34: 3909-3922. [20] CHEN X Y, ZHOU Q Q. The production of porous carbon from calcium lignosulfonate without activation process and the capacitive performance[J]. Electrochimica Acta, 2012, 71: 92-99. [21] MINH T D, NCIBI M C, CERTENAIS M, et al. Cobalt-lignosulfonate complex derived non-noble catalysts: facile valorization for high-performance redox conversion of organic pollutants[J]. Journal of Cleaner Production, 2020, 253: 120013. [22] YAN L, WANG H Y, SHEN J L, et al. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting[J]. Chemical Engineering Journal, 2021, 403: 126385. [23] ZHOU Q X, HOU S Y, CHENG Y X, et al. Interfacial engineering Co and MnO within N, S co-doped carbon hierarchical branched superstructures toward high-efficiency electrocatalytic oxygen reduction for robust Zn-air batteries[J]. Applied Catalysis B: Environmental, 2021, 295: 120281. [24] SUN Y, WANG J, QI Y F, et al. Efficient electrooxidation of 5-hydroxymethylfurfural using Co-doped Ni3S2 catalyst: promising for H2 production under Industrial-level current density[J]. Advanced Science, 2022, 9: e2200957. [25] JIA X, KANG H J, YANG X X, et al.Amorphous Ni(Ⅲ) -based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water[J]. Applied Catalysis B: Environmental, 2022, 312: 121389. [26] XU F, WANG J L, ZHANG Y X, et al. Structure-engineered bifunctional oxygen electrocatalysts with Ni3S2 quantum dot embedded S/N-doped carbon nanosheets for rechargeable Zn-air batteries[J]. Chemical Engineering Journal, 2022, 432: 134256. [27] LONG Y K, LI S, SU Y P, et al. Sulfur-containing iron nanocomposites confined in S/N co-doped carbon for catalytic peroxymonosulfate oxidation of organic pollutants: low iron leaching, degradation mechanism and intermediates[J]. Chemical Engineering Journal, 2021, 404: 126499. [28] RAO P, LIU Y L, SU Y Q, et al. S, N co-doped carbon nanotube encased Co NPs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries[J]. Chemical Engineering Journal, 2021, 422: 130135. [29] PEI L, ZHONG J S, LI T Z, et al. CoS2@N-doped carbon core-shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation[J]. Journal of Materials Chemistry A, 2020, 8: 6795-6803. [30] ZHAO C X, LIU J N, WANG C D, et al. An anionic regulation mechanism for the structural reconstruction of sulfide electrocatalysts under oxygen evolution conditions[J]. Energy & Environmental Science, 2022, 15: 3257-3264. |
[1] | 罗朝兵, 李海潮, 游婷婷, 许凤. 木质素低共熔溶剂分离、功能材料制备及应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 1-13. |
[2] | 马明国, 袁琪. 基于木质素的多功能材料应用研究进展[J]. 广东工业大学学报, 2022, 39(01): 14-20,62. |
[3] | 郝艳平, 罗通, 吕高金, 王超, 周昊, 杨桂花, 陈嘉川. 木质素基可降解复合膜材料的研究进展[J]. 广东工业大学学报, 2022, 39(01): 21-33. |
[4] | 刘雪, 刘忠明, 席跃宾, 王守娟, 孔凡功. 木质素基超疏水涂层的制备及其应用性能研究[J]. 广东工业大学学报, 2022, 39(01): 34-40,134. |
[5] | 郭鹏; 陈敏; 陈中豪; . 高效降解木质素优势混合菌的诱变选育研究[J]. 广东工业大学学报, 1997, 14(4): 34-39. |
|