广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (05): 97-104.doi: 10.12052/gdutxb.230119

• 机械工程 • 上一篇    下一篇

高重频飞秒激光加工碳纤维复合材料的热影响研究

李兆艳1, 谢小柱1,2,3, 赖庆1, 黄亚军1,2   

  1. 1. 广东工业大学 机电工程学院, 广东 广州 510006;
    2. 广东工业大学 实验教学部, 广东 广州 510006;
    3. 广东工业大学 精密电子制造技术与装备国家重点实验室,广东 广州 510006
  • 收稿日期:2023-08-28 出版日期:2024-09-25 发布日期:2024-05-25
  • 通信作者: 谢小柱(1975-),男,教授,博士,主要研究方向为激光微纳加工,E-mail:xiaozhuxie@gdut.edu.cn
  • 作者简介:李兆艳(1995-),女,博士研究生,主要研究方向为激光微纳加工,E-mail:1033848385@qq.com
  • 基金资助:
    国家自然科学基金资助项目(52075103);广东省基础与应用基础研究基金区域联合基金重点项目(2020B1515120058)

Thermal Effects of High-frequency Femtosecond Laser Processing of CFRP

Li Zhao-yan1, Xie Xiao-zhu1,2,3, Lai Qing1, Huang Ya-jun1,2   

  1. 1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Department of Experiment Teaching, Guangdong University of Technology, Guangzhou 510006, China;
    3. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-08-28 Online:2024-09-25 Published:2024-05-25

摘要: 碳纤维增强复合材料(Carbon Fiber Reinforced Plastics,CFRP)的激光定量去除是航空航天工业中结构修复的关键技术。然而,CFRP中碳纤维和环氧树脂性能的巨大差异使得激光加工非常具有挑战性,热损伤一直是CFRP激光加工广泛应用的主要障碍。为了研究高重频飞秒激光加工对CFRP复合材料的热影响,采用单因素实验方法进行了理论分析和实验验证,分析了激光能量密度、扫描速度和扫描方向对材料烧蚀速率与热影响区的影响规律,并研究了飞秒激光在 CFRP 上的高精度选区定量去除工艺。结果表明:当工艺参数选择 θ = 90°,脉宽为 290 fs,功率为7 W,频率为 100 kHz,扫描速度为 300 mm/s,扫描间距为 60~80 μm 时,整体烧蚀表面质量较优,精度(粗糙度)可以达到 10 μm,去除区域表面热影响区约为 33.9 μm。

关键词: 飞秒激光, 碳纤维增强复合材料, 工艺参数, 热影响区, 定量去除

Abstract: Laser selective quantitative removal of CFRP represents a key technology for structural repair in the aerospace industry. However, the huge difference in properties between carbon fiber and epoxy resin in CFRP makes laser processing very challenging, and thermal damage has always been the main obstacle to the widespread application of CFRP laser processing. In order to study the influence of femtosecond laser processing parameters on the machining quality of CFRP, theoretical analysis and experimental verification were carried out by single factor experimental method. The influence of laser energy density, scanning speed and scanning direction on the ablation rate and the width of heat affected zone were analyzed, and the high-precision selective quantitative removal process of femtosecond laser on CFRP was investigated. The results show that when the process parameters are chosen to be θ = 90°, pulse width of 290 fs, power of 7 W, frequency of 100 kHz, scanning speed of 300 mm/s, and scanning spacing of 60~80 μm, the overall ablation surface quality is superior, and the accuracy (roughness) can be as high as 10 μm, and the heat-affected zone (HAZ) on the surface of the removed area is about 33.9 μm.

Key words: femtosecond laser, carbon fiber reinforced plastics (CFRP), process parameters, heat affected zone, quantitative removal

中图分类号: 

  • TP241.2
[1] JIAO F, LI Y, NIU Y, et al. A review on the drilling of CFRP/Ti stacks: machining characteristics, damage mechanisms and suppression strategy at stack interface [J]. Composite Structures, 2023, 305: 116489.
[2] SAYAM A, RAHMAN A N M M, RAHMAN M S, et al. A review on carbon fiber-reinforced hierarchical composites: Mechanical performance, manufacturing process, structural applications and allied challenges [J]. Carbon Letters, 2022, 32(5): 1173-1205.
[3] LEONE C, MINGIONE E, GENNA S. Laser cutting of CFRP by Quasi-Continuous Wave (QCW) fibre laser: Effect of process parameters and analysis of the HAZ index [J]. Composites Part B:Engineering, 2021, 224: 109146.
[4] KARATAS M A, GOKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials [J]. Defence Technology, 2018, 14(4): 318-326.
[5] JIA Z, FU R, NIU B, et al. Novel drill structure for damage reduction in drilling CFRP composites [J]. International Journal of Machine Tools and Manufacture, 2016, 110: 55-65.
[6] FU R, JIA Z, WANG F, et al. Drill-exit temperature characteristics in drilling of UD and MD CFRP composites based on infrared thermography [J]. International Journal of Machine Tools and Manufacture, 2018, 135: 24-37.
[7] SHEN Z, LU L, SUN J, et al. Wear patterns and wear mechanisms of cutting tools used during the manufacturing of chopped carbon fiber [J]. International Journal of Machine Tools and Manufacture, 2015, 97: 1-10.
[8] ALYOUSELF J, YUDHANTO A, TAO R, et al. Laser ablation of CFRP surfaces for improving the strength of bonded scarf composite joints [J]. Composite Structures, 2022, 296: 115881.
[9] ZHOU L, HUANG P, JIAO H, et al. Study on mechanism of spray-mist-assisted laser processing of carbon fiber reinforced plastic [J]. Optics & Laser Technology, 2023, 158: 108821.
[10] LI W, ZHANG G, HUANG Y, et al. UV laser high-quality drilling of CFRP plate with a new interlaced scanning mode [J]. Composite Structures, 2021, 273: 114258.
[11] DELL'ERBA M, GALANTUCCI L M, MIGLIETTA S. An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources [J]. Composites Manufacturing, 1992, 3(1): 14-19.
[12] JUNG K W, KAWAHITO Y, KATAYAMA S. Ultra-high speed disk laser cutting of carbon fiber reinforced plastics[J]. Journal of laser applications, 2012, 24(1) .
[13] GENG D, TENG Y, LIU Y, et al. Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes [J]. Journal of Materials Processing Technology, 2019, 270: 195-205.
[14] LEONE C, GENNA S. Heat affected zone extension in pulsed Nd: YAG laser cutting of CFRP [J]. Composites Part B:Engineering, 2018, 140: 174-182.
[15] TAKAHASHI K, TSUKAMOTO M, MASUNO S, et al. Influence of laser scanning conditions on CFRP processing with a pulsed fiber laser [J]. Journal of materials processing technology, 2015, 222: 110-121.
[16] OH S, LEE I, PARK Y B, et al. Investigation of cut quality in fiber laser cutting of CFRP [J]. Optics & Laser Technology, 2019, 113: 129-140.
[17] OLIVERIRA V, SHARMA S P, De M M, et al. Surface treatment of CFRP composites using femtosecond laser radiation [J]. Optics and Lasers in Engineering, 2017, 94: 37-43.
[1] 唐超兰, 谢义. 6061铝合金铣削工艺参数多目标优化[J]. 广东工业大学学报, 2020, 37(05): 87-93.
[2] 李扬, 王玉. 塑料挤出机生产工艺参数调度优化专家系统[J]. 广东工业大学学报, 2015, 32(3): 73-78.
[3] 何凯龙,陈颖,莫松平,冯婧. 工艺参数对铜基Ni-P-PTFE化学复合镀的影响[J]. 广东工业大学学报, 2013, 30(1): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!