广东工业大学学报 ›› 2013, Vol. 30 ›› Issue (4): 55-60.doi: 10.3969/j.issn.1007-7162.2013.04.009

• 综合研究 • 上一篇    下一篇

一种改进的混沌局部搜索的人工蜂群算法

赵舒阳,刘伟,蔡耀河   

  1. 广东工业大学 应用数学学院,广东 广州 510006
  • 收稿日期:2012-09-11 出版日期:2013-12-30 发布日期:2013-12-30
  • 作者简介:赵舒阳(1986-),男,硕士研究生,主要研究方向为智能计算.
  • 基金资助:

    国家自然科学基金资助项目(60974077)

Artificial Bee Colony Algorithm Based on Improvement  of Chaotic Local Search

Zhao Shuyang, Liu Wei, Cai Yao-he   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2012-09-11 Online:2013-12-30 Published:2013-12-30

摘要: 人工蜂群算法具有鲁棒性强、收敛速度快且全局寻优性能优异等优点,但其局部搜索能力不足.为了克服此缺陷,提出了一种改进的混沌局部搜索的人工蜂群算法.新算法在每一代的所有个体的平均值附近利用混沌函数进行局部搜索,然后在搜索到的解和原食物源之间采用贪婪选择的原则确定下一代种群.基于6个标准测试函数的仿真结果表明,本算法能有效地加快收敛速度,提高最优解的精度,其性能优于已有的人工蜂群算法.

关键词: 人工蜂群算法;混沌函数;局部搜索

Abstract: The artificial bee colony algorithm has good robust,high convergence speed and outstanding performance in global optimization, but its ability of local search is not good enough. In order to improve its ability of local search, an improved chaotic artificial bee colony algorithm was proposed. In the new algorithm, local search is executed nearby the mean of all individuals, selecting the better individual between the solution searched by chaos function and previous population. Experimental simulation shows that the improved algorithm not only accelerates the convergence rate, but also improves its accuracy, whose performance is better than that of the existing artificial bee colony algorithm.

Key words: artificial bee colony; chaos functions; local search

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!