广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (3): 87-91.
摘要: 提出一种基于高斯混合模型和canny算法的运动目标检测算法.利用高斯混合模型计算像素之间的颜色信息,同时利用高斯混合模型更新背景信息;用canny算子提取图像的边缘信息;将颜色信息和区域结构信息线性融合起来,较好地解决了边缘信息明显的运动目标检测.实验中采用改进的加权高斯模型及传统的canny算法相结合.结果表明,本文方法比经典高斯混合模型方法具有较高的分割精度,鲁棒性较好.
[1] Suo Peng,Wang Yanjiang. An improved ddaptive background modeling algorithm based on gaussian mixture model[C].ICSP2008, 1426-1439[2] Power P W, Schoonees J A. Understanding background mixture models for foregrounds segmentation [C]∥ Proceedings of Image and Vision Computing. New Zealand: Auckland, 2002: 267-271.[3] 陈世文,蔡念,唐孝艳. 一种基于高斯混合模型的运动目标检测的改进算法[J]. 现代电子技术, 2010, 33 (2): 125127,130.[4] Harville M, Gordon G, Woodfill J. Foreground segmentation using adaptive mixture models in color and depth [C]∥IEEE Proceedings of IEEE Workshop on Detection and Recognition of Events in Video. Canada Vancouver, 2001: 3-11.[5] 原春锋,王传旭,张祥光,等. 光照突变环境下基于高斯混合模型和梯度信息的视频分割[J] .中国图形图像学报,2007,11(12):2 068-2 073.[6] 刘鑫,刘辉,强振平,等.混合高斯模型和帧间差分相融合的自适应背景模型[J] .中国图形图像学报,2008,4(13):729-735.[7] Li Liyuan, Maglor K H. Integrating intensity and texture differences for robust change detection[J].IEEE Trans Image Procession,2002,11(2):102-112.[8] Zhong J, Sclaroff S. Segmenting foreground objects from a dynamic textured background via a robust kalman filter [C] ∥Proceedings of International Conference on Computer Vision. USA:IEEE,2003:44-50.[9] Jabri S, Duric Z, Wechsler H. Detection and location people in video images using adaptive fusion of color and edge information [C]∥Proceedings of International Conference on Pattern Recognition. Barcelona, 2000, 627-630.[10] Ercan Ozyildiz, Nils Krahnstover, Rajeev Sharma. Adaptive texture and color segmentation for tracking moving objects [J]. Pattern Recognition, 2002, 35(10): 2013-2029. |
No related articles found! |
|