Journal of Guangdong University of Technology ›› 2017, Vol. 34 ›› Issue (01): 90-94.doi: 10.12052/gdutxb.150108

Previous Articles    

Object Location for Binocular Stereo Vision Based on Improved SIFT Feature

Li De-long, Liu Wei   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2015-10-21 Online:2017-01-09 Published:2017-01-09

Abstract:

Stereo matching is the most important step in binocular vision, and it is also the most difficult problem to solve. The traditional stereo matching to get the regional disparity map is just passable, for the characteristics of the non-texture regions are difficult to retain the depth map discontinuing, so getting the 3D information of the target is slow and inaccurate, Therefore, a new SIFT image matching is proposed, firstly, making the epipolar constraint on the left and right image; secondly, selecting the ROI of target from the left of binocular images, and reducing running time by reducing the dimension of feature vectors and accelerating the matching speed by using BBF algorithm based on KD tree, and finally, removing the false matching by using RANSAC algorithm. The experiment results show that the improved SIFT algorithm can get the target's feature points quickly and accurately, so the 3D coordinates can be calculated by the triangulation method speedy.

Key words: the improved SIFT algorithm, binocular stereo, object location, feature matching

CLC Number: 

  • TP242

[1] 孟浩, 程康. 基于SIFT特征点的双目视觉定位[J]. 哈尔滨工程大学学报, 2009, 30(6):649-652. MENG H, CHENG K. Object location technique for bino-cular stereo vision based on scale invariant feature transform feature points[J]. Journal of Harbin Engineering University, 2009, 30(6):649-652.
[2] 李耀云, 贾敏智. 基于Harris-SIFT算法的双目视觉定位[J]. 电视技术, 2013, 37(9):23-26.LI Y Y, JIA M Z. Object location technique for bin-ocular stereo vision based on harris-SIFT algorithm[J]. Video Engineering, 2013, 37(9):23-26.
[3] 王晓华, 傅卫平. 零件的双目视觉识别定位与抓取系统[J]. 制造业自动化, 2010, 32(11):129-131.WANG X H, FU W P. Research on recognition and location system of work-piece based on binocular vision[J]. Manufacturing Automation, 2010, 32(11):129-131.
[4] 李瑞峰, 李庆喜. 机器人双目视觉的标定与定位算法[J]. 哈尔滨工业大学学报, 2007, 39(11):1719-1723.LI R F, LI Q X. Calculation of the position between mobile robot and object based on two CCD cameras[J]. Journal of Harbin Institute of Technology, 2007, 39(11):1719-1723.
[5] 李晓飞, 宋亚男, 徐荣华, 等. 基于双目视觉的船舶跟踪与定位[J]. 南京信息工程大学学报, 2015, 7(1):46-52.LI X F, SONG Y N, XU R H, et al. Tracking and positioning of ship based on binocular vision[J]. Journal of Nanjing University of Information Science & Technology, 2015, 7(1):46-52.
[6] 申琳.高精度双目CCD测距研究[D]. 长春:长春理工大学光电工程学院, 2011.
[7] 王玉翰, 金波. 基于双目立体视觉的深度信息测量[J]. 机电工程技术, 2015, 44(3):34-38. WANG Y H, JIN B. Depth information measurement based on binocular stereo vision[J]. Mechanical & Electrical Engineering Technology, 2015, 44(3):34-38.
[8] 王婷婷, 李戈, 赵杰, 等. 基于双目视觉的运动目标检测跟踪与定位[J]. 机械与电子, 2015, 6:73-76. WANG T T, LI G, ZHAO J, et al. Detection, tracking and positioning of moving target based on binocular vision[J]. Machinery & Electronics, 2015, 6:73-76.
[9] 刘浩, 李晋惠, 乔永兴, 等. 基于计算机双目视觉的火灾定位问题的研究[J]. 科技信息:学术版, 2008, 22:67-68. LIU H, LI J H, QIAO Y X, et al. Research on the problem of fire location based on computer binocular vision[J]. Science & Technology Information:Academic Edition, 2008, 22:67-68.
[10] 孙伟, 钟映春, 谭志, 等. 多特征融合的室内场景分类研究[J]. 广东工业大学学报, 2015, 32(1):75-79.SUN W, ZHONG Y C, TAN Z, et al. Research on multi-featured fusion for indoor scene recognition[J]. Journal of Guangdong University of Technology, 2015, 32(1):75-79.
[11] 雷禹, 何家峰. 基于改进SURF算法的SAR图像目标匹配[J]. 广东工业大学学报, 2014, 31(1):65-69. LEI Y, HE J F. SAR image target matching based on the improved SURF algorithm[J]. Journal of Guangdong University of Technology, 2014, 31(1):65-69.
[12] 阳吉斌, 胡访宇, 朱高. 基于改进SURF算法的遥感图像匹配[J]. 电子测量技术, 2012, 35(3):69-72. YANG J B, HU F Y, ZHU G. Remote sensing image registration based on improved SURF[J]. Electronic Measurement Technology, 2012, 35(3):69-72.
[13] 刘萍萍, 赵宏伟, 臧雪柏, 等. 移动机器人定位图像匹配的快速局部特征算法[J]. 仪器仪表学报, 2009, 30(8):1714-1718. LIU P P, ZHAO H W, ZANG X B, et al. Fast local feature algorithm applied to mobile robot localization image matching[J]. Chinese Journal of Scientific Instrument, 2009, 30(8):1714-1718.
[14] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.
[15] LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[16] Zhang Z. A flexible new technique for camera calibration[J]. Transactions on Pattern Analysis and Machine Intelligence, 2000, 20(11):1330-1334.
[17] Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceeding of IEEE International Conference on Computer Vision.[S.l.]:IEEE, 1999, 11(1):666-673.

[1] Hu Xiao-min, Long Zu-tao, Li Min. A Multi-objective Recommendation Algorithm Based on User Stratification [J]. Journal of Guangdong University of Technology, 2023, 40(01): 10-18.
[2] Huang Fang, Qiu Yu-fu, Guo Jing. Dynamic Modeling and H Control Method of an MRI-compatible Hydraulically Needle Insertion Robot [J]. Journal of Guangdong University of Technology, 2023, 40(01): 68-76.
[3] Liu Yang, Peng Shi-guo, Ma Hong-zhi, Liao Wei-xin. Dynamic Parameter Identification and Gait Tracking of Lower Limb Exoskeleton Robot [J]. Journal of Guangdong University of Technology, 2022, 39(06): 44-52.
[4] Wang Dong, Huang Rui-yuan, Li Wei-zheng, Huang Zhi-feng. A Research on Docking Position Optimization Method of Mobile Robot for Grasping Task [J]. Journal of Guangdong University of Technology, 2021, 38(06): 53-61.
[5] Guo Xin-de, Chris Hong-qiang Ding. An AGV Path Planning Method for Discrete Manufacturing Smart Factory [J]. Journal of Guangdong University of Technology, 2021, 38(06): 70-76.
[6] Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58.
[7] Lin Lin, Li Xiao-tao, Xu Yong-li. Hot Spots and Development Trend of TRIZ Theory and Method in China [J]. Journal of Guangdong University of Technology, 2021, 38(02): 10-19.
[8] Jie Yun-fei, Everett Wang, Zhong You-dong, Zhi Kai-xuan, Xiong Chao-wei. An Indoor Positioning Method of Monocular Vision Robot Based on Floor Features [J]. Journal of Guangdong University of Technology, 2020, 37(05): 31-37.
[9] Ye Wei-jie, Gao Jun-li, Jiang Feng, Guo Jing. A Research on a Training Model to Improve the Development Efficiency of Robot Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2020, 37(05): 46-50.
[10] Chen Yu-peng, Gao Wei-qiang, Lu Yi-guang. A Teaching Data Optimization Method of Hand by Hand Teaching Spray Robot [J]. Journal of Guangdong University of Technology, 2020, 37(04): 21-26.
[11] Zeng Han-mei, Huang Zhi-feng, Lin Zhong-xiu, Kou Xiao-dong, Zhang Yun. An Investigation into Human Anticipatory Postural Adjustments on Cooperative Task Motion Control and Posture Control [J]. Journal of Guangdong University of Technology, 2019, 36(05): 25-32.
[12] Liu Biao, Huang Zhi-feng, Zhang Yun. A Research on Biped Robot's Obstacle Stepping Over and Avoidance Assisted by External Forces [J]. Journal of Guangdong University of Technology, 2019, 36(02): 62-69.
[13] Wu Yun-xiong, Zeng Bi. Trajectory Tracking and Dynamic Obstacle Avoidance of Mobile Robot Based on Deep Reinforcement Learning [J]. Journal of Guangdong University of Technology, 2019, 36(01): 42-50.
[14] Wang Sheng-min, Lin Wei, Zeng Bi. Path Planning of Opposite Q Learning Robot Based on Virtual Sub-Target in Unknown Environment [J]. Journal of Guangdong University of Technology, 2019, 36(01): 51-56,62.
[15] Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!