Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (05): 68-74.doi: 10.12052/gdutxb.200005

Previous Articles     Next Articles

A Research on Numerical Simulation of Droplet Generation in Crossing Microchannels

Luo Jun-wu1, Li Dong-mei2, Liang Shuai2, Wang Shuai-chao2, Xiao Shu-hong1   

  1. 1. School of Electromechanic Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Shunde Innovative Design Institute, Foshan 528300, China
  • Received:2019-12-31 Online:2020-09-17 Published:2020-09-17

Abstract: Based on the fluid volume fraction (VOF) model of Fluent software, the droplet generation process in crossing microchannel was investigated by three-dimensional numerical simulation study, and the influences of continuous phase viscosity, dispersed phase viscosity, two-phase interfacial tension and wall contact angle on droplet generation were researched respectively, providing reference for practical applications. The simulation results showed that the droplet size decreased and the generation frequency increased with the increasing flow velocity of continuous phase. When the continuous phase viscosity was increased, the droplet size would decrease and the generation frequency change was opposite. If the dispersed phase viscosity exceeded the continuous phase viscosity, the jet flow phenomenon would occur and the droplets could not be generated. With the increase of the interfacial tension coefficient of two phases, the droplet size would increase, and the formation frequency would decrease. Increasing wall contact angle is beneficial to droplet generation, and when the two-phase flow rate was 0.01 m/s and 0.02 m/s, the contact angle should be set to 150° and 120° respectively to generate droplets normally.

Key words: crossing type, fluid volume fraction (VOF), numerical simulation, droplet, two-phase flow

CLC Number: 

  • TH776
[1] 巩燕, 胡杰, 高彬, 等. 心血管疾病即时检测技术的研究进展[J]. 中国科学: 技术科学, 2016, 46(11): 1116-1134
GONG Y, HU J, GAO B, et al. Advances in real-time detection of cardiovascular diseases [J]. Science in China: Technical Science, 2016, 46(11): 1116-1134
[2] 林银银, 巫金波. 基于微流控技术的高通量材料合成、表征及测试平台[J]. 自然杂志, 2017, 39(2): 103-114
LIN Y Y, WU J B. High throughput material synthesis, characterization and testing platform based on microfluidic technology [J]. Chinese Journal of Nature, 2017, 39(2): 103-114
[3] 吴晶, 黄伶慧, 王远航, 等. 微流控芯片电泳在食品安全与环境污染检测中的应用[J]. 分析测试学报, 2015, 34(3): 283-288
WU J, HUANG L H, WANG Y H, et al. Application of microfluidic chip electrophoresis in food safety and environmental pollution detection [J]. Journal of Analytical Testing, 2015, 34(3): 283-288
[4] 高克鑫, 范一强, 金志明, 等. 微流控芯片在提高石油采收率技术中的应用[J]. 断块油气田, 2018, 25(2): 269-272
GAO K X, FAN Y Q, JIN Z M, et al. Application of microfluidic chip in enhanced oil recovery [J]. Fault Block Oil and Gas Field, 2018, 25(2): 269-272
[5] 董亮, 霍丹群, 周军, 等. 微流控芯片在食品安全分析中的应用进展[J]. 分析测试学报, 2015, 34(4): 483-487
DONG L, HUO D Q, ZHOU J, et al. Application progress of microfluidic chip in food safety analysis [J]. Journal of Analytical Testing, 2015, 34(4): 483-487
[6] ZHAO C X, MILLER E, COOPER-WHITE J J, et al. Effects of fluid-fluid interfacial elasticity on droplet formation in microfluidic devices [J]. Aiche Journal, 2011, 57(7): 1669-1677
[7] TUCKERMAN D B, PEASE R. High-performance heat sinking for VLSI [J]. IEEE Electron Device Letters, 1981, 2(5): 126-129
[8] 林炳承. 微纳流控芯片实验室[M]. 北京: 科学出版社, 2013.
[9] CHEN B, GUO F, LI G J, et al. Three-dimensional simulation of bubble formation through a microchannel t-junction [J]. Chemical Engineering Technology, 2013, 36(12): 1-15
[10] RAJ R, MATHUR N, BUWA V V, et al. Numerical simulations of liquid-liquid flows in microchannels [J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10606-10614
[11] SOMASEKHARA G S, ARNAB A. CFD analysis of microfluidic droplet formation in non-newtonian liquid [J]. Chemical Engineering Journal, 2017, 330: 245-261
[12] 王维萌, 马一萍, 陈斌. 十字交叉微通道内微液滴生成过程的数值模拟[J]. 化工学报, 2015, 66(5): 1633-1641
WANG W M, MA Y P, CHEN B. Numerical simulation of droplet formation in crossing micro-channels [J]. Journal of Chemical Engineering, 2015, 66(5): 1633-1641
[13] 杨丽, 周围, 王学浩, 等. 基于流动聚焦结构的微液滴形成机理[J]. 微纳电子技术, 2015, 52(9): 576-580
YANG L, ZHOU W, WANG X H, et al. Microdroplet formation mechanism based on flow focusing structure [J]. Micro-electronic Technology, 2015, 52(9): 576-580
[14] 陈珉芮, 钱锦远, 李晓娟, 等. 十字型微通道中非定常分散相速度下液滴生成的数值分析[J]. 高校化学工程学报, 2008, 32(3): 522-528
CHEN M R, QIAN J Y, LI X J, et al. Numerical analysis of droplet formation at unsteady dispersed phase velocity in crossing microchannels [J]. Journal of Chemical Engineering of University of China, 2008, 32(3): 522-528
[15] 吴梁玉. 双乳液的制备及其流体动力学行为研究[D]. 南京: 东南大学, 2016.
[16] 吴平. 液滴微流控的实验应用和理论研究[D]. 合肥: 中国科学技术大学, 2014.
[17] 钟映春, 谭湘强, 杨宜民. 微流体力学几个问题的探讨[J]. 广东工业大学学报, 2001, 18(3): 46-48
ZHONG Y C, TAN X Q, YANG Y M. Discussion on several Issues in microfluid mechanism [J]. Journal of Guangdong University of Technology, 2001, 18(3): 46-48
[1] Liu Xiao-zhou, Zhu Rui, Zhu Guang-yu. Numerical Simulation and Experimental Research of Methane-hydrogen Combustion Technology on Swirl Gas Stove [J]. Journal of Guangdong University of Technology, 2023, 40(01): 113-121.
[2] Dai Mei-ling, Cheng Cheng, Wu Zhi-wen, Lu Zhen-wei, Lu Jie-xun, Yang Jian, Yang Fu-jun. Quasi-static Compressive Mechanical Behaviors of Perforated Hollow-Sphere Structures [J]. Journal of Guangdong University of Technology, 2022, 39(04): 83-90,97.
[3] Liu Xiao-zhou, Zhu Guang-yu. A Research on Gas Flow Characteristics and Structure Optimization in Primary Air Chamber of Circulating Fluidized Bed Boiler [J]. Journal of Guangdong University of Technology, 2022, 39(03): 116-124.
[4] Li Yu-hang, Gao Zhen-yu, Yang Xue-qiang, Liu Pan. Test and Numerical Analysis of Penetration Resistance of Static Pressure Steel Sheet Pile [J]. Journal of Guangdong University of Technology, 2022, 39(01): 129-134.
[5] Gan Yang-yang, Li Zhi-sheng. A Numerical Simulation and an Analysis of Air Curtain Control Effect on PM2.5 in the Kitchen [J]. Journal of Guangdong University of Technology, 2020, 37(03): 82-87.
[6] Liu Chen-lin, Zheng San-qiang, Han Xiao-zhuo. A Spatio-temporal Dynamic Analysis of a Predation-competition System with Allee Effect [J]. Journal of Guangdong University of Technology, 2019, 36(06): 38-44.
[7] Wu Cheng-he, Liu Li-ru, Chen Yi-gang, Wang Zhang-yuan. A Performance Study of Solar Chimney with Rotating Collector [J]. Journal of Guangdong University of Technology, 2018, 35(05): 70-74.
[8] Li Zhi-sheng, Liu Xu-hong, Zheng Jie-dong, Liu Li-ru, Wang Xiao-xia. Thermal Environment Simulation and Airflow Distribution Analysis of Passenger Boarding Bridge [J]. Journal of Guangdong University of Technology, 2018, 35(02): 28-34.
[9] ZHAO Bing-Chun, WANG Xin, LAI Zhi-Ping. Effects of Building Layout Forms on Thermal environment in Residential Districts [J]. Journal of Guangdong University of Technology, 2016, 33(06): 91-95.
[10] WANG Chang-Hong, HUANG Jiong-Tong, ZENG Wen-Qiang. Numerical Simulation and Analysis of Heat Transfer Characteristics in Electrode of Spot Welding for High Melting Steel [J]. Journal of Guangdong University of Technology, 2016, 33(03): 6-10.
[11] LIU Yong-Jian, LIU Yi-Mei, CHEN Chuang-Xin, WANG Ying, LUO Qi-Yang, LIN Hui. Research on Deformation Characteristics of Protective Structure of Deep Foundation Pit in Soft Soil [J]. Journal of Guangdong University of Technology, 2016, 33(01): 89-94.
[12] YANG Yi. Finite Volume Method Model for Unsteadystate Heat and Mass Transfer in Seawater Solar Pond [J]. Journal of Guangdong University of Technology, 2015, 32(2): 120-125.
[13] Lai Zhiping, Wang Xin. Numerical Simulation of Wind Pressure Distribution on Building Surfaces at a Convention Centre [J]. Journal of Guangdong University of Technology, 2014, 31(2): 78-84.
[14] YANG Chun-Shan, HE Na, ZHANG Ya-Ning-. Numerical Analysis of Seepage stress Coupling of  Deep Foundation Pit Excavation [J]. Journal of Guangdong University of Technology, 2013, 30(4): 43-48.
[15] Gong Chen,Wang Xin. Research on the Characteristics of Local Atmospheric Flow in Urban Residential Areas [J]. Journal of Guangdong University of Technology, 2012, 29(3): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!