Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (05): 40-47.doi: 10.12052/gdutxb.200175
Previous Articles Next Articles
Zhang Guo-sheng, Feng Guang, Li Dong
CLC Number:
[1] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974-3983. [2] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104(2): 154-171. [3] REN S, HE K, GIRSHICK R, et al. Fasterr-cnn: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. [4] HE K, GKIOXARI G, DOLLAR P, et al. Mask r-cnn[C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2961-2969. [5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018. [6] 钟映春, 孙思语, 吕帅, 等. 铁塔航拍图像中鸟巢的YOLOv3识别研究[J]. 广东工业大学学报, 2020, 37(3): 42-48. ZHONG Y C, SUN S Y, LYU S, et al. Recognition of bird’s nest on transmission tower in aerial images of high-voltage power line by YOLOv3 algorithm [J]. Journal of Guangdong University of Technology, 2020, 37(3): 42-48. [7] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988. [8] ZHOU X, WANG D, KRAHENBUHL P. Objects as points[J]. arXiv preprint arXiv: 1904.07850, 2019. [9] DING J, XUE N, LONG Y, et al. Learning roi transformer for detecting oriented objects in aerial images[J]. arXiv preprint arXiv: 1812.00155, 2018. [10] YANG X, YANG J, YAN J, et al. Scrdet: towards more robust detection for small, cluttered and rotated objects[C]//IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 8232-8241. [11] XU Y, FU M, WANG Q, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020(99): 1. [12] QIAN W, YANG X, PENG S, et al. Learning modulated loss for rotated object detection[J]. arXiv preprint arXiv: 1911.08299, 2019. [13] YANG X, LIU Q, YAN J, et al. R3det: refined single-stage detector with feature refinement for rotating object[J]. arXiv preprint arXiv: 1908.05612, 2019. [14] PAN X, REN Y, SHENG K, et al. Dynamic refinement network for oriented and densely packed object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11207-11216. [15] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C] //IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5693-5703. [16] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125. [17] ZHU P, WEN L, BIAN X, et al. Vision meets drones: a challenge[J]. arXiv preprint arXiv: 1804.07437, 2018. [18] EVERINGHAM M, ESLAMI S, WILLIAMS C , et al. The pascal visual object classes (voc) challenge [J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [19] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]//European Conference on Computer Vision. Zurich: Springer, 2014: 740-755. [20] AZIMI S M, VIG E, BAHMANYAR R, et al. Towards multi-class object detection in unconstrained remote sensing imagery[C]//Asian Conference on Computer Vision. Perth : Springer, 2018: 150-165. [21] LIN Y, FENG P, GUAN J. Ienet: interacting embranchment one stage anchor free detector for orientation aerial object detection[J]. arXiv preprint arXiv: 1912.00969, 2019. [22] WEI H, ZHANG Y, CHANG Z, et al. Oriented objects as pairs of middle lines [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 268-279. [23] ZHANG X, LZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in uav vision based on cascade network[C]//IEEE International Conference on Computer Vision Workshops. Seoul: IEEE, 2019. [24] ZHANG J, HUANG J, CHEN X, et al. How to fully exploit the abilities of aerial image detectors[C]//IEEE International Conference on Computer Vision Workshops. Seoul: IEEE, 2019. [25] YANG F, FAN H, CHU P, et al. Clustered object detection in aerial images[C]//IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 8311-8320. [26] WANG H, WANG Z, JIA M, et al. Spatial attention for multi-Scale feature refinement for object detection[C]//IEEE International Conference on Computer Vision Workshops. Seoul: IEEE, 2019. [27] ZHANG P, ZHONG Y, LI X. SlimYOLOv3: Narrower, faster and better for real-time UAV applications[C]//IEEE International Conference on Computer Vision Workshops. Seoul: IEEE, 2019. |
[1] | Xie Guo-bo, Lin Li, Lin Zhi-yi, He Di-xuan, Wen Gang. An Insulator Burst Defect Detection Method Based on YOLOv4-MP [J]. Journal of Guangdong University of Technology, 2023, 40(02): 15-21. |
[2] | Yang Ji-sheng, Zhang Yun, Li Dong. A Residual Neural Network with Voting for 3D Object Detection in Point Clouds [J]. Journal of Guangdong University of Technology, 2022, 39(01): 56-62. |
[3] | Huang Jian-hang, Wang Zhen-you. A Research on Deep Learning Object Detection Algorithm Based on Feature Fusion [J]. Journal of Guangdong University of Technology, 2021, 38(04): 52-58. |
[4] | Cui Tie-jun, Li Sha-sha. Research on the Intelligent Science Theory of Oriental Thinking Based on Factor Driven [J]. Journal of Guangdong University of Technology, 2021, 38(01): 1-4. |
[5] | Zhou Ze-xing, Liu Yi-xin, Zhang Guang-yu. The Innovation Impediment and Solutions to the New-Pattern R&D Institution from the Perspective of Legal Person [J]. Journal of Guangdong University of Technology, 2020, 37(01): 95-102. |
[6] | Wang Can-ming, Yan Qiu-sheng, Lu Jia-bin, Qiu Xuan-feng, Zhang Xiao-wei. Influence of Grain Size and Orientation of Electrical Silicon Steel on Work Hardening in the Disc Slitting [J]. Journal of Guangdong University of Technology, 2017, 34(01): 55-59. |
[7] | SHI Hong-Yan, LIU Shan-Shan. Finite Element Programming for the Superposed Element Used to Analyze Consolidation of Soil [J]. Journal of Guangdong University of Technology, 2014, 31(4): 115-120. |
[8] | CHEN Shi-Wen1, 2 , Cai-Nian2, Xiao-Ming-Ming3. Detection of Moving Objects Based on the Gaussian Mixture Model and the Canny Operator [J]. Journal of Guangdong University of Technology, 2011, 28(3): 87-91. |
[9] | Cheng Qi-long,Tang Ping,Zhang Shu-ping. [J]. Journal of Guangdong University of Technology, 2008, 25(2): 62-65. |
[10] | CAO Xiao-jun,PAN Bao-chang,ZHENG Sheng-lin,GAN Yan-fen . Motion Object Detection Method Based on the Characteristic Image [J]. Journal of Guangdong University of Technology, 2007, 24(2): 87-89. |
[11] | CHENG Peng,LI Dai-ping,YANG Wen-wei. The Combination of Structured Method and Object-oriented Method [J]. Journal of Guangdong University of Technology, 2006, 23(3): 102-107. |
[12] | QIAN Hong,LI Wei-hua,XIE Zhao-beng. Research on a Service-oriented Model for the Semantic Grid [J]. Journal of Guangdong University of Technology, 2006, 23(1): 102-108. |
[13] | LIANG Yan,PAN Bao-chang,ZHENG Sheng-lin,GAN Wang-yu. New Location Method of ID Card Numbers [J]. Journal of Guangdong University of Technology, 2005, 22(4): 62-66. |
[14] | TAN Tai-zhe,DING Lei,LIU Chang-ping,YU Yong-quan . An Effective Algorithm for Extraction of Fingerprint Geometric Framework [J]. Journal of Guangdong University of Technology, 2005, 22(3): 43-47. |
[15] | ZHAO Rui. Modeling Multimedia Database Systems [J]. Journal of Guangdong University of Technology, 2005, 22(2): 75-78. |
|