Journal of Guangdong University of Technology ›› 2022, Vol. 39 ›› Issue (01): 78-84.doi: 10.12052/gdutxb.200178

Previous Articles     Next Articles

A Design of AGV for Miniature Agricultural Transportation and Research on Piecewise Fuzzy Control

Li Jue1,2, Zou Da-peng1, Wang Gao-jie2, Ren Yong3   

  1. 1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Shunde Innovative Design Institute, Foshan 528000, China;
    3. Guangzhou Baichuang Electromechanical Equipment Co., Ltd., Guangzhou 511450, China
  • Received:2020-12-30 Published:2022-01-20

Abstract: Agricultural transport automatic guided vehicle (AGV), as a high-efficiency, green, automatic transport machinery and equipment, with its low-cost, miniature design, has become an important development direction of modern agricultural mechanization. In view of the agricultural greenhouse environment, an AGV for agricultural transportation based on magnetic navigation is designed. Firstly, the carrying capacity of the AGV is calculated to determine its working capacity. Then, combined with the designed magnetic navigation module, the kinematics model of the AGV is built. The driving speed of the AGV is simulated and tested by using fuzzy PID control algorithm, and the results show that the AGV can complete the speed control response within 4 s, and finally achieve relatively stable operation, with the speed error less than 5%. Finally, the piecewise fuzzy PID control algorithm is designed to simulate and experiment the tracking guidance of AGV, and the results show that the relative position error between AGV and navigation magnetic stripe can be adjusted under different driving speeds, and the relative position error can be kept within ±7.5 mm when AGV runs stably.

Key words: automatic guided vehicle (AGV), magnetic navigation, PID, fuzzy control, agricultural transportation

CLC Number: 

  • S24
[1] YU S Y, YE C L, LIU H J, et al. Development of an omnidirectional automated guided vehicle with MY3 wheels [J]. Perspectives in Science, 2016, 7: 364-368.
[2] 张辰贝西, 黄志球. 自动导航车(AGV)发展综述[J]. 中国制造业信息化, 2010, 39(1): 53-59.
ZHANG C B X, HUANG Z Q. Evolution summarization of automated guided vehicles (AGV) [J]. Machine Design and Manufacturing Engineering, 2010, 39(1): 53-59.
[3] 刘明实, 胡祎骁, 罗心皓. 基于农业运输的综合问题分析[J]. 经贸实践, 2018(17): 38.
LIU M S, HU Y X, LUO X H. Analysis of comprehensive problems based on agricultural transportation [J]. Economic & Trade, 2018(17): 38.
[4] 孙晓. 轻型电动农用运输机械发展现状和趋势[J]. 江苏农机化, 2012(4): 26-27.
SUN X. Development status and trend of light electric agricultural transport machinery [J]. Jiangsu Agricultural Mechanization, 2012(4): 26-27.
[5] 邓文博, 万红珍. 科技创新、农业机械化对广东农业经济增长的影响[J]. 五邑大学学报(社会科学版), 2020, 22(4): 67-71.
DENG W B, WAN H Z. The impact of science and technology innovation and agricultural mechanization on agricultural economic growth in Guangdong province [J]. Journal of Wuyi University (Social Sciences Edition), 2020, 22(4): 67-71.
[6] 陈之群, 曹雪, 胡晓丽, 等. 大棚马铃薯套种茄子3次收获高效栽培技术[J]. 中国蔬菜, 2018(5): 101-103.
CHEN Z Q, CAO X, HU X L, et al. High efficient cultivation techniques of potato interplanting with eggplant in greenhouse [J]. China Vegetables, 2018(5): 101-103.
[7] TAKESHIMA H, HATZENBUEHLER P L, EDEH H O. Effects of agricultural mechanization on economies of scope in crop production in Nigeria [J]. Agricultural Systems, 2020, 177: 102691.
[8] 蒲宝山, 陈永快, 王涛, 等. 自动导航车技术发展状况及在农业领域的应用及前景展望[J]. 江苏农业科学, 2020, 48(1): 61-65.
PU B S, CHEN Y K, WANG T, et al. Development status of automated guided vehicle technology and its application and prospect in agriculture [J]. Jiangsu Agricultural Sciences, 2020, 48(1): 61-65.
[9] BELL J, MACDONALD B A, AHN H S, et al. An analysis of automated guided vehicle standards to inform the development of mobile orchard robots [J]. IFAC-PapersOnLine, 2016, 49(16): 475-480.
[10] 赵晨宇, 陈息坤. 差速转向农业专用AGV小车的设计与模糊控制研究[J]. 农机化研究, 2016, 38(11): 123-127.
ZHAO C Y, CHEN X K. Study on fuzzy control of an agricultural dedicated AGV with differential steering [J]. Journal of Agricultural Mechanization Research, 2016, 38(11): 123-127.
[11] 贺坤. 基于航姿与磁导航传感器融合的四轮转向AGV路径跟踪研究[D]. 镇江: 江苏大学, 2018.
[12] 罗远杰, 陈息坤, 高艳霞. 现代农业自动化AGV小车的设计与模糊控制研究[J]. 工业控制计算机, 2015, 28(12): 68-71.
LUO Y J, CHEN X K, GAO Y X. Study on fuzzy control of AGV used in automation of modern agriculture [J]. Industrial Control Computer, 2015, 28(12): 68-71.
[13] KOSTOV M, KOSTOVA V, MARKOSKA R. AGV guidance system simulations with a programmable robotics kit [J]. International Journal of Reasoning-based Intelligent Systems, 2015, 7(1/2): 42-46.
[14] 尚婕, 姜文刚, 蔡蓝图. 差速转向的农用自动引导小车控制系统设计[J]. 江苏科技大学学报(自然科学版), 2011, 25(5): 453-456.
SHANG J, JIANG W G, CAI L T. Design of control system of agricultural automatic guided vehicle with differential steering [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2011, 25(5): 453-456.
[15] 田丽芳. 基于纯滚动转向的采摘机器人轮式AGV系统设计与试验研究[D]. 镇江: 江苏大学, 2016.
[16] 王锋. 丘陵山地果园动力底盘的坡地通过性研究[D]. 重庆: 西南大学, 2020.
[17] 肖全. 面向3C自动化生产线的AGV结构设计与控制研究[D]. 广州: 广东工业大学, 2018.
[18] 鲍金. 基于PID算法的双轮差动式移动机器人定位和导航研究[D]. 沈阳: 东北大学, 2008.
[19] 叶甲秋. 自动导向小车(AGV)驱动系统辨识与动态特性分析[D]. 南京: 南京航空航天大学, 2010.
[20] ZHANG J Y. PID control realization of drying system of the finishing line based on MCGS and PLC[C]//2020 2nd International Conference on Applied Machine Learning and Data Science (ICAMLDS 2020). Chengdu: IOP Publishing, 2020, 1629: 012015.
[21] LUO K. Investigation on machinery control system based on fuzzy PID control technology [J]. Applied Mechanics and Materials, 2012, 1999: 130-134.
[22] 马广志, 吴伟, 党国栋. 基于Simulink的履带机器人路径追踪仿真[J]. 机械研究与应用, 2017, 30(6): 77-78.
MA G Z, WU W, DANG G D. Simulation of tracked robot tracking path based on the simulink [J]. Mechanical Research & Application, 2017, 30(6): 77-78.
[1] Wang Dong, Huang Rui-yuan, Li Wei-zheng, Huang Zhi-feng. A Research on Docking Position Optimization Method of Mobile Robot for Grasping Task [J]. Journal of Guangdong University of Technology, 2021, 38(06): 53-61.
[2] Hu San-gen, Wang Run-hong, Wang Xiao-xia, Liu Yuan-yuan. Modeling of Travel Mode Choice Behavior of Residents in Different Stages of the COVID-19 Epidemic [J]. Journal of Guangdong University of Technology, 2021, 38(01): 32-38.
[3] Zeng Zhen-hua, Zheng Hui-feng, Zhu Yu-Jie, Luo Zhi-Yong. A Research on Control System of Multi-rotor UAV Self-precision Landing [J]. Journal of Guangdong University of Technology, 2020, 37(01): 87-94.
[4] Zheng San-qiang, Han Xiao-zhuo. A Simulation of Cellular Automata Based on the SIR Infectious Disease Model with Multifactorial Constraints [J]. Journal of Guangdong University of Technology, 2018, 35(05): 51-59.
[5] Zeng Fan-wu, Xiong Rui, Wu Jian, Du Xi-tao, Zhu Min-si. Turbocharger Control Based on Energy Balance Model [J]. Journal of Guangdong University of Technology, 2018, 35(01): 56-60.
[6] ZENG En-Shan, XIONG Rui, WU Jian, ZHOU Xin, ZHANG Zong-Lan. A Study of Rapid Aging of Automotive Catalyst on the Bench [J]. Journal of Guangdong University of Technology, 2016, 33(06): 49-52.
[7] WU Ping-Jing, WANG Yin-He, CHEN Hao-Guang. PID Control Based on Pole-assignment and Modified Recursive Prediction Error Algorithm for Neural Networks [J]. Journal of Guangdong University of Technology, 2015, 32(04): 112-117.
[8] Du Junte, Li Yang. The Parameter Selftuning Fuzzy PID Control Method and Its Application in Enamelling Machine Oven [J]. Journal of Guangdong University of Technology, 2014, 31(2): 58-63.
[9] Xiong Jia-qin, Xiong Rui, Wu Jian, Chen Dong-xin, Li Xin. The Application of Idle Speed Control Strategy for Incremental PID in the Engine [J]. Journal of Guangdong University of Technology, 2013, 30(3): 109-111.
[10] Gao Zi-lin, Wang Yin-he, Shi Bing-jie. Design of Tracking Control for a Class of Nonlinear Systems Based on Adaptive Fuzzy Logic Systems [J]. Journal of Guangdong University of Technology, 2012, 29(4): 77-81.
[11] Li Lan, Jin Chao-yong . Adaptive Fuzzy Control for a Class of Uncertain Nonlinear MIMO Systems with Supervisory Control Performance [J]. Journal of Guangdong University of Technology, 2012, 29(2): 79-84.
[12] LU Ping, JIN Chao-Yong-. Research and Improvement of PID Neural Network [J]. Journal of Guangdong University of Technology, 2011, 28(4): 55-58.
[13] LI Ling-Yu, GUO Gui-Fa, XU Jin-Biao. Optimizing and Adjusting the Parameter of PID Based on Simulated Annealing Genetic Algorithms [J]. Journal of Guangdong University of Technology, 2010, 27(2): 80-83.
[14] Gao Jing-guang,Sun You-fa,Zhang Cheng-ke. A SIRS Epidemic Model with Varying Population Size and Its Controlling Strategies [J]. Journal of Guangdong University of Technology, 2008, 25(3): 31-35.
[15] Ye Wei-qiong1,2,Yu Yong-quan1. Design of Fuzzy Sliding Mode Controls in the Hydraulic Servo System [J]. Journal of Guangdong University of Technology, 2008, 25(2): 74-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!