Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (03): 67-73.doi: 10.12052/gdutxb.210199

Previous Articles     Next Articles

Robust Model Predictive Control for PMSM Base on PID-type Cost Function

Liu Xi-jun, Gu Ai-yu, Pang Cheng-jie   

  1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-12-16 Online:2023-05-25 Published:2023-06-08

Abstract: When finite control set model predictive control (FCS-MPC) is applied in the flux-weakening control of permanent magnet synchronous machine (PMSM), the system suffers from poor parameter robustness. To solve this problem, a proportional-integral-derivative (PID) -type cost function of FCS-MPC in the flux-weakening control of PMSM is proposed. In the proposed strategy, the PID-type cost function consists of three components: the proportional error cost of tracking the current, the integral error cost of weakening the steady-state control error, and the differential error cost of reducing the ripple error. The prediction model is established by the mathematical model of PMSM, and the implementation process of FCS-MPC with PID-type cost function in the flux-weakening control of PMSM is described in detail. Meanwhile, the delay compensation strategy is applied to the system to ensure the accuracy of the prediction. The simulation results prove that when the parameters of the PMSM are mismatched in the flux-weakening control, the FCS-MPC base on the PID-type cost function can not only improve the robustness of the control system to motor parameters and load torque perturbations, but also retain the good dynamic performance of FCS-MPC.

Key words: finite control set model predictive control, permanent magnet synchronous machine, flux-weakening control, cost function, parameter robustness

CLC Number: 

  • TM341
[1] LI L, JIE X, ZHAO Y, et al. Robust position anti-interference control for PMSM servo system with uncertain disturbance [J]. CES Transactions on Electrical Machines and Systems, 2020, 4(2): 151-160.
[2] GU A Y, GUO Y W, DONG J N, et al. Modeling and analysis of the flux-weakening range of interior permanent magnet synchronous machines with segmented permanent magnets [C] //2020 8th International Conference on Power Electronics Systems and Applications (PESA), Phoenix: IEEE, 2020.
[3] 齐昕, 苏涛, 周珂, 等. 交流电机模型预测控制策略发展概述[J]. 中国电机工程学报, 2021, 41(18): 6408-6419.
QI X, SU T, ZHOU K, et al. Development of AC motor model predictive control strategy: an overview [J]. Proceedings of the CSEE, 2021, 41(18): 6408-6419.
[4] 常勇, 包广清, 杨梅, 等. 模型预测控制在永磁同步电机系统中的应用发展综述[J]. 电机与控制应用, 2019, 46(8): 11-17.
CHANG Y, BAO G Q, YANG M, et al. Application and development of model predictive control in permanent magnet synchronous motor system [J]. Electric Machines & Control Application, 2019, 46(8): 11-17.
[5] ZHANG X, ZHAO Z. Multi-stage series model predictive control for PMSM drives [J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 6591-6600.
[6] HAN Y, GONG C, YAN L, et al. Multi-objective finite control set model predictive control using novel delay compensation technique for PMSM [J]. IEEE Transactions on Power Electronics, 2020, 35(10): 11193-11204.
[7] SUN C, SUN D, CHEN W, et al. Improved model predictive control with new cost function for hybrid-inverter open-winding PMSM system based on energy storage model [J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10705-10715.
[8] ZOU M, WANG S, LIU M, et al. Model predictive control of permanent-magnet synchronous motor with disturbance observer [C]//2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Phoenix: IEEE, 2019.
[9] HANG J, WU H, ZHANG J, et al. Cost function-based open-phase fault diagnosis for PMSM drive system with model predictive current control [J]. IEEE Transactions on Power Electronics, 2021, 36(3): 2574-2583.
[10] 颜学龙, 谢刚, 孙天夫, 等. 基于模型预测控制的永磁同步电机电流控制技术综述[J]. 电机与控制应用, 2019, 46(9): 1-11.
YAN X L, XIE G, SUN T F, et al. Review on permanent magnet synchronous motor current control techniques based on model predictive control [J]. Electric Machines & Control Application, 2019, 46(9): 1-11.
[11] 石讯, 易映萍, 王晓丽. 内置式永磁同步电机弱磁控制技术的研究[J]. 电子科技, 2020, 33(2): 14-19.
SHI X, YI Y P, WANG X L. Research on flux weakening control technology of interior permanent magnet synchronous motor [J]. Electronic Science and Technology, 2020, 33(2): 14-19.
[12] 阮博, 谷爱昱, 廉迎战, 等. 基于有限元法的永磁同步电机弱磁特性分析[J]. 微电机, 2019, 52(8): 55-58.
RUAN B, GU A Y, LIAN Y Z, et al. Analysis of weak magnetic characteristics of permanent magnet synchronous motor based on finite element method [J]. Micromotors, 2019, 52(8): 55-58.
[13] 姚绪梁, 麻宸伟, 王景芳, 等. 基于预测误差补偿的鲁棒型永磁同步电机模型预测电流控制[J]. 中国电机工程学报, 2021, 41(17): 6071-6081.
YAO X L, MA C W, WANG J F, et al. Robust model predictive current control for PMSM based on prediction error compensation [J]. Proceedings of the CSEE, 2021, 41(17): 6071-6081.
[14] 李键. 永磁同步电机模型预测电流控制的预测误差分析及抑制研究[D]. 杭州: 浙江大学, 2019.
[15] 王楠楠, 蔡彬. 一种基于改进模型预测控制算法的永磁同步电机多参数辨识研究[J]. 微电机, 2018, 51(11): 62-67.
WANG N N, CAI B. Research on multi-parameter identification of PMSM based on an improved MPC algorithm [J]. Micromotors, 2018, 51(11): 62-67.
[16] 陈卓易, 屈稳太. 基于PID型代价函数的永磁同步电机模型预测电流控制[J]. 电工技术学报, 2021, 36(14): 2971-2978.
CHEN Z Y, QU W T. Model predictive current control for permanent magnet synchronous motors based on PID-type cost function [J]. Transactions of China Electrotechnical Society, 2021, 36(14): 2971-2978.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!