Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (04): 117-124.doi: 10.12052/gdutxb.220146

• Comprehensive Studies • Previous Articles     Next Articles

Preparation and Bonding Properties of Super Antioxidant Copper Paste

Zhang Yu, Huang Zhong-wei, Liu Qiang, Yang Guan-nan, Cui Cheng-qiang   

  1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-09-19 Online:2023-07-25 Published:2023-08-02

Abstract: In order to realize the wide application and improve the performance of third-generation semiconductor devices, the development of new and high-performance packaging interconnect materials has become a key initiation. Among them, micro/nano copper material can be sintered into block structures with high electrical conductivity, high thermal conductivity, high stability and electromigration resistance under low temperature conditions due to its surface effect and small size effect, which has become a research hotspot for the development of new packaging interconnect materials. However, the problems of easy oxidation, agglomeration and low yield of micro/nano copper material limit its application in third-generation semiconductor devices, and the oxidation resistance improvement of micro/nano copper material has become a key problem to solve its application. In this research, benzimidazole was used to treat micro/nano copper material, and the coating of micro/nano copper particles by benzimidazole was confirmed by Scanning Electron Microscope (SEM), infrared spectroscopy and other characterization methods. The copper paste was subjected to X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to prove that the paste could be left in air for 120 days without oxidation. The strength of the interconnect joint prepared at 300 °C reached 62.3 MPa, and the resistivity of the sintered layer was as low as 6.18×10−8 Ω·m. The results show that the method of treating micro/nano copper material by benzimidazole can help it to achieve super oxidation resistance and good interconnection performance, which is of profound significance for the research and development of third-generation semiconductor packaging interconnect materials.

Key words: third generation semiconductor, package, copper paste, imidazole, anti-oxidation

CLC Number: 

  • TQ352.7
[1] 甘贵生, 江兆琪, 陈仕琦, 等. 电子封装异质材料连接研究进展[J]. 重庆理工大学学报(自然科学), 2021, 35(12): 94-106.GAN G S, JIANG Z Q, CHEN S Q, et al. Progress of dissimilar materials bonding in electronic packaging[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(12): 94-106.
[2] 江汉文, 俞星星, 薛名山, 等. 碳化硅在导热材料中的应用及其最新研究进展[J]. 南昌航空大学学报(自然科学版), 2021, 35(2): 51-60.JIANG H W, YU X X, XUE M S, et al. Application and latest research progress of SiC as thermal conductivity materials[J]. Journal of Nanchang Hangkong University (Natural Science), 2021, 35(2): 51-60.
[3] SEROKA N S, TAZIWA R, KHOTSENG L. Solar energy materials-evolution and niche applications: a literature review[J]. Materials, 2022, 15(15): 5338.
[4] WANG W L, JIANG H S, LI L H, et al. Two-dimensional group-iii nitrides and devices: a critical review[J]. Reports on Progress in Physics, 2021, 84(8): 086501.
[5] 王晓锋, 何小琦, 尧彬. PBGA封装回流焊翘曲变形仿真与验证[J]. 广东工业大学学报, 2020, 37(2): 94-101.WANG X F, HE X Q, YAO B. Simulation and verification of warpage deformation of PBGA package reflow soldering[J]. Journal of Guangdong University of Technology, 2020, 37(2): 94-101.
[6] 熊蘅, 马宇宏, 司博文, 等. 电子互连导电胶的力学性能及胶连点跌落冲击行为[J]. 高压物理学报, 2022, 36(3): 67-74.XIONG H, MA Y H, SI B W, et al. Mechanical properties of electronic interconnected conductive adhesive and drop impact behavior of adhesive bonding point[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 67-74.
[7] 王美玉, 胡伟波, 孙晓冬, 等. 功率电子封装关键材料和结构设计的研究进展[J]. 电子与封装, 2021, 21(10): 106-115.WANG M Y, HU W B, SUN X D, et al. Research progress on key materials and structure design of power electronics packaging materials[J]. Electronics & Packaging, 2021, 21(10): 106-115.
[8] 刘璇, 徐红艳, 李红, 等应用于功率芯片封装的瞬态液相扩散连接材料与接头可靠性研究进展[J]. 材料导报, 2021, 35(19): 19116-19124.LIU X, XU H Y, LI H, et al. Current research in transient liquid phase bonding material and joint reliability for power chip packaging[J]. Materials Reports, 2021, 35(19): 19116-19124.
[9] WANG J N, CHEN J S, ZHANG L X, et al. Forming mechanism and growth of kirkendall voids of Sn/Cu joints for electronic packaging: a recent review[J]. Journal of Advanced Joining Processes, 2022, 6: 100125.
[10] HUO F P, JIN Z, HAN D L, et al. Novel interface regulation of Sn1.0Ag0.5Cu composite solders reinforced with modified ZrO2: microstructure and mechanical properties[J]. Journal of Materials Science & Technology, 2022, 125: 157-170.
[11] SUNDARAM D, YANG V, YETTER R A. Metal-based nanoenergetic materials: synthesis, properties, and applications[J]. Progress in Energy and Combustion Science, 2017, 61: 293-365.
[12] 曾策, 崔西会, 廖承举, 等纳米铜在电子封装中的应用研究进展[J]. 微纳电子技术, 2021, 58(10): 866-874.ZENG C, CUI X H, LIAO C J, et al. Advances in application research of nano-copper in electronic packaging[J]. Micronanoelectronic Technology, 2021, 58(10): 866-874.
[13] WANG Y, HUANG Y T, LIU Y X, et al. Thermal instability of nanocrystalline Cu enables Cu-Cu direct bonding in interconnects at low temperature[J]. Scripta Materialia, 2022, 220: 114900.
[14] KAMIKORIYAMA Y, IMAMURA H, MURAMATSU A, et al. Ambient aqueous-phase synthesis of copper nanoparticles and nanopastes with low-temperature sintering and ultra-high bonding abilities[J]. Scientific Reports, 2019, 9(1): 899.
[15] HUANG H J, WU X, ZHOU M B, et al. Superior strength and strengthening mechanism of die attachment joints by using bimodal-sized Cu nanoparticle paste capable of low-temperature pressureless sintering[J]. Journal of Materials Science:Materials in Electronics, 2021, 32(3): 3391-3401.
[16] MOU Y, PENG Y, LI J, et al. Facile preparation of Cu micro-nano composite particle paste for low temperature bonding[C]// WONG S F. 201920th International Conference on Electronic Packaging Technology (ICEPT). Hong Kong: IEEE, 2019: 1-4.
[17] LI J J, LIANG Q, SHI T L, et al. Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding[J]. Journal of Alloys and Compounds, 2019, 772: 793-800.
[18] YAN J F, ZOU G S, HU A M, et al. Preparation of PVP coated Cu NPs and the application for low-temperature bonding[J]. Journal of Materials Chemistry, 2011, 21(40): 15981-15986.
[19] VASEEM M, LEE K M, KIM D Y, et al. Parametric study of cost-effective synthesis of crystalline copper nanoparticles and their crystallographic characterization[J]. Materials Chemistry and Physics, 2011, 125(3): 334-341.
[20] ZHAO J, ZHANG D M, SONG X J. Simple and eco-friendly preparation of silver films coated on copper surface by replacement reaction[J]. Applied Surface Science, 2012, 258(19): 7430-7434.
[21] LUO X X, GELVES G A, SUNDARARAJ U, et al. Silver-coated copper nanowires with improved anti-oxidation property as conductive fillers in low-density polyethylene[J]. The Canadian Journal of Chemical Engineering, 2013, 91(4): 630-637.
[22] STERGAR J, FERK G, BAN I, et al. The synthesis and characterization of copper-nickel alloy nanoparticles with a therapeutic curie point using the microemulsion method[J]. Journal of Alloys and Compounds, 2013, 576: 220-226.
[23] ZHANG Y, LIU Q, LIU Y, et al. Green synthesis of novel in situ micro/submicron-Cu paste for semiconductor interconnection[J]. Nanotechnology, 2022, 33(28): 285705.
[24] 赵永生, 庞正智, 卢艳华. 咪唑化合物在铜表面的成膜机理[J]. 化工学报, 2004, 55(4): 659-663.ZHAO Y S, PANG Z Z, LU Y H. Mechanism of film forming for imidazole and its derivatives on surface of copper[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(4): 659-663.
[25] 胡陆国, 胡正发, 肖扬, 等乙醇淬火对纳米CuO光催化剂的改性研究[J]. 广东工业大学学报, 2020, 37(4): 84-90.HU L G, HU Z F, XIAO Y, et al. A study of the modification of nano-CuO photocatalyst by ethanol quenching[J]. Journal of Guangdong University of Technology, 2020, 37(4): 84-90.
[26] 虞鑫海, 傅菊荪, 刘万章. Jp-6新型导电胶的性能研究[J]. 化学与黏合, 2010, 32(6): 26-29.YU X H, FU J S, LIU W Z. Study on property of JP-6 novel electrically conductive adhesive[J]. Chemistry and Adhesion, 2010, 32(6): 26-29.
[27] LIU Y, LIU T T, LIU X C, et al. Study on the synthetic mechanism of monodispersed polystyrene-nickel composite microspheres and its application in facile synthesis of epoxy resin-based anisotropic conductive adhesives[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 656: 130378.
[28] LI Y, WONG C P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: materials, processing, reliability and applications[J]. Materials Science and Engineering: Reports, 2006, 51(1): 1-35.
[29] FAN J L, LIU Z Y, ZHAI H T, et al. Effect of Co content on the microstructure, spreadability, conductivity and corrosion resistance of Sn-0.7Cu alloy[J]. Microelectronics Reliability, 2020, 107: 113615.
[30] LEE Y, CHOI J R, LEE K J, et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics[J]. Nanotechnology, 2008, 19(41): 415604.
[31] KANG J S, KIM H S, RYU J, et al. Inkjet printed electronics using copper nanoparticle ink[J]. Journal of Materials Science:Materials in Electronics, 2010, 21(11): 1213-1220.
[32] LIU J D, CHEN H T, JI H J, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33289-33298.
[33] LI J J, YU X, SHI T L, et al. Low-temperature and low-pressure Cu-Cu bonding by highly sinterable Cu nanoparticle paste[J]. Nanoscale Research Letters, 2017, 12(1): 255.
[34] LI J J, YU X, SHI T L, et al. Depressing of Cu-Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles[J]. Journal of Alloys and Compounds, 2017, 709: 700-707.
[1] Wang Xiao-feng, He Xiao-qi, Yao Bin. Simulation and Verification of Warpage Deformation of PBGA Package Reflow Soldering [J]. Journal of Guangdong University of Technology, 2020, 37(02): 94-101.
[2] Wang Neng-huo, Zhao Wei-ren, Chen Jun-hua, Meng Ying-jun, Zhou Yi-yang, Zhang Xin. A novel LED plane light source [J]. Journal of Guangdong University of Technology, 2017, 34(01): 65-70,77.
[3] HU Qin, LIU Fu-Chun. Optimization Control of Cloud Resource Allocation Based on DES [J]. Journal of Guangdong University of Technology, 2016, 33(01): 29-35.
[4] HUANG Jian-Xin, ZENG Jing-Jia, CHEN Dan-Yang, CHEN Xun-Wei, YANG Shao-Bing, HAO Zhi-Feng. Synthesis of Ethylenediamine-Tetra-Acetate Diester of α, δ-(2-Methyl-5-Nitroimidazole-1-ethanol) by Microwave Radiation Method [J]. Journal of Guangdong University of Technology, 2015, 32(04): 35-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!