Journal of Guangdong University of Technology ›› 2018, Vol. 35 ›› Issue (03): 47-53.doi: 10.12052/gdutxb.180036
Previous Articles Next Articles
Li Qi-xiang1, Xiao Yan-shan1, Hao Zhi-feng2, Ruan Yi-bang1
CLC Number:
[1] SCHÖLKOPF B, PLATT J, HOFMANN T. Multi-instance multi-label learning with application to scene classification[C]//NIPS'06 Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2006:1609-1616. [2] DIETTERICH T G, LATHROP R H, LOZANO-PÉREZ T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1-2):31-71. [3] CHINNIYAN K, GANGADHARAN S, SABANAIKAM K. Semantic similarity based web document classification using support vector machine[J]. International Arab Journal of Information Technology, 2017, 14(3):258-292. [4] FENG S, XU D. Transductive multi-Instance multi-Label learning algorithm with application to automatic image annotation[J]. Expert Systems with Applications, 2010, 37(1):661-670. [5] 梁礼欣, 郝志峰, 蔡瑞初, 等. 基于混合高斯分布伪样本生成的情感分析方法[J]. 广东工业大学学报, 2016, 33(6):85-90.LIANG L X, HAO Z F, CAI R C, et al. An approach to sentiment analysis of Chinese microblogs based on Gaussian mixture distribution pseudo-sample generation[J]. Journal of Guangdong University of Technology, 2016, 33(6):85-90. [6] 陈炳丰, 郝志峰, 蔡瑞初, 等. 面向汽车评论的细粒度情感分析方法研究[J]. 广东工业大学学报, 2017, 34(3):8-14.CHEN B F, HAO Z F, CAI R C, et al. A fine-grained sentiment analysis algorithm for automotive reviews[J]. Journal of Guangdong University of Technology, 2017, 34(3):8-14. [7] CHEN D Y, LIN K Y. Face-based multiple instance analysis for smart electronics billboard[J]. Multimedia Tools and Applications, 2012, 59(1):221-240. [8] 杨帆, 李建平, 李鑫, 等. 基于多任务深度卷积神经网络的显著性对象检测算法[J]. 计算机应用, 2018, 38(1):91-96.YANG F, LI J P, LI X, et al. Salient object detection algorithm based on multi-task deep convolutional neural network[J]. Journal of Computer Applications, 2018, 38(1):91-96. [9] ANDREWS S, TSOCHANTARIDIS I, HOFMANN T. Support vector machines for multiple-instance learning[J]. Advances in Neural Information Processing Systems, 2003, 15(2):561-568. [10] ZHANG Q, GOLDMAN S A. EM-DD:an improved multiple-instance learning technique[C]//International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver:MIT Press, 2001:1073-1080. [11] WANG J, ZUCKER J D. Solving the multiple-instance problem:a lazy learning approach[C]//Seventeenth International Conference on Machine Learning.San Francisco:Morgan Kaufmann, 2000:1119-1126. [12] 贾松达, 庞宇松, 阎高伟. 多任务LS-SVM在时间序列预测中的应用[J]. 计算机工程与应用, 2018, 54(3):233-237.JIA S D, PANG Y S, YAN G W, et al. Multi-task LS-SVM for application of time series prediction[J]. Computer Engineering and Applications, 2018, 54(3):233-237. [13] EVGENIOU T, PONTIL M. Regularized multi-task learning[C]//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle:ACM, 2004:109-117. [14] Chih-Chung Chang, Chih-jen Lin. LIBSVM:A library for support vector machines[J]. Journal ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-27. [15] 刘成, 彭进业. 基于多任务学习的自然图像分类研究[J]. 计算机应用研究, 2012, 29(7):2773-2775.LIU C, PENG J Y. Research of classification method for natural images based on multitask learning[J]. Application Research of Computers, 2012, 29(7):2773-2775. [16] AGGARWAL C C, YU P. A framework for clustering uncertain data streams[C]//IEEE International Conference on Data Engineering. Cancun:IEEE, 2008:150-159. [17] ZENG T, JI S W. Deep convolutional neural networks for multi-instance multi-task learning[C]//IEEE International Conference on Data Mining. Atlantic:IEEE, 2015:579-588. |
[1] | Zhang Xin, Wang Zhen-you. A Knowledge Representation Model Based on Bi-Objective Alternate Optimization Under Probability [J]. Journal of Guangdong University of Technology, 2022, 39(04): 24-31. |
[2] | Ge Biao-biao, Yang Chun-yan. A Research on the Relationship between Scientific Effect, Extension Transformation and Conductive Effect [J]. Journal of Guangdong University of Technology, 2021, 38(06): 91-97. |
[3] | Liu Gao-yong, Tan Yi-wen, Ai Dan-xiang, Huang Jing-zhao. A Microblog Opinion Leader Identification Method Based on Opinion Mining in Emergencies [J]. Journal of Guangdong University of Technology, 2021, 38(04): 41-51. |
[4] | Cai Hao, Liu Bo. A Semi-supervised Two-view Multiple-Instance Clustering Model [J]. Journal of Guangdong University of Technology, 2021, 38(03): 22-28,47. |
[5] | Gao Hong, Xi Chang-qing, Liu Wei. Application of Extension Analysis and Decision: A Case Study of College Enrollment System [J]. Journal of Guangdong University of Technology, 2021, 38(01): 13-20. |
[6] | Wang Yan-guang, Zhu Hong-bin, Xu Wei-chao. A Review on ROC Curve and Analysis [J]. Journal of Guangdong University of Technology, 2021, 38(01): 46-53. |
[7] | Tu Jun-ping, Huang Ji-kang, Luo Xiang-long, Chen Jian-yong, Yang Zhi, Liang Ying-zong, Chen Ying. An Experimental Study of Axial Uniform Boiling Heat Transfer Characteristics of R245fa in Horizontal Smooth Tube [J]. Journal of Guangdong University of Technology, 2020, 37(06): 71-77. |
[8] | Zeng Bi-qing, Han Xu-li, Wang Sheng-yu, Xu Ru-yang, Zhou Wu. Sentiment Classification Based on Double Attention Convolutional Neural Network Model [J]. Journal of Guangdong University of Technology, 2019, 36(04): 10-17. |
[9] | Wang Feng, Gu Jiao-jiao, Sun Jiang, Lin Yu. Transmission Process Element and Process Element Extension Set and Its Engineering Application [J]. Journal of Guangdong University of Technology, 2018, 35(05): 1-4. |
[10] | Xiao He-man, Cheng Si-yuan, Yang Xue-rong, Li Su-yang, Zhang Hai-yan. Patent Avoidance Design for Heterogeneous Products Based on Function Similarity Matrix [J]. Journal of Guangdong University of Technology, 2018, 35(05): 5-10. |
[11] | Liu Yi-xin, Liang Xiao, Zhu Huai-nian, Zhang Guang-yu. Identification and Classification of Barriers to Emerging Technology Industrialization Based on Sustainable Transition (ST) Theory [J]. Journal of Guangdong University of Technology, 2018, 35(04): 1-9. |
[12] | Luo Wei. Decomposition and Application of Measurement Errors in Survey Sampling [J]. Journal of Guangdong University of Technology, 2018, 35(04): 51-55. |
[13] | Zhao Rui. Classification and Causes of Conductive Contradictions of Complex Contradictory Problems [J]. Journal of Guangdong University of Technology, 2017, 34(04): 12-16. |
[14] | Teng Shao-hua, Lu Dong-lue, Huo Ying-xiang, Zhang Wei. Classification Method Based on Dimension Reduction [J]. Journal of Guangdong University of Technology, 2017, 34(03): 1-7. |
[15] | Shi Ji-lei, Zhu Shu-hai, Lu Hua-jing, Li Ri-hua. A Research on the Auto-correlation and Cross-correlation Function Based on Conductive Transformation [J]. Journal of Guangdong University of Technology, 2017, 34(01): 11-14,39. |
|