Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 27-33.doi: 10.12052/gdutxb.230050
• Smart Medical • Previous Articles Next Articles
Liang Yu-chen1, Cai Nian1, Ouyang Wen-sheng1, Xie Yi-ying1, Wang Ping2
CLC Number:
[1] MARKELIĆ I, HLAPČIĆ I, ČERI A, et al. Activation of NLRP3 inflammasome in stable chronic obstructive pulmonary disease [J]. Scientific Reports, 2022, 12(1): 7544. [2] VESTBO J, HURD S S, AGUSTÍ A G, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary [J]. American Journal of Respiratory and Critical Care Medicine, 2013, 187(4): 347-365. [3] MATHERS C D, LONCAR D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS Medicine, 2006, 3(11): e442. [4] 周祖东. 慢性阻塞性肺疾病急性加重期的临床治疗分析[J]. 中外医疗, 2020, 39(36): 67-69. ZHOU Z D. Analysis of clinical treatment in acute exacerbation of chronic obstructive pulmonary disease [J]. China & Foreign Medical Treatment, 2020, 39(36): 67-69. [5] LYNCH D A, AUSTIN J H M, HOGG J C, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner society [J]. Radiology, 2015, 277(1): 192-205. [6] GALBÁN C J, HAN M K, BOES J L, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression [J]. Nature Medicine, 2012, 18(11): 1711-1715. [7] LYNCH D A, MOORE C M, WILSON C, et al. CT-based visual classification of emphysema: association with mortality in the COPDGene study [J]. Radiology, 2018, 288(3): 859-866. [8] SHAH V, KENIYA R, SHRIDHARANI A, et al. Diagnosis of COVID-19 using CT scan images and deep learning techniques [J]. Emergency Radiology, 2021, 28(3): 497-505. [9] POLAT Ö, ŞALK İ, DOĞAN Ö T. Determination of COPD severity from chest CT images using deep transfer learning network [J]. Multimedia Tools and Applications, 2022, 81(15): 21903-21917. [10] MONDOÑEDO J R, SATO S, OGUMA T, et al. CT imaging-based low-attenuation super clusters in three dimensions and the progression of emphysema [J]. Chest, 2019, 155(1): 79-87. [11] XU C, QI S, FENG J, et al. DCT-MIL: deep CNN transferred multiple instance learning for COPD identification using CT images [J]. Physics in Medicine & Biology, 2020, 65(14): 145011. [12] AHMED J, VESAL S, DURLAK F, et al. COPD classification in CT images using a 3D convolutional neural network[C]// Bildverarbeitung für die Medizin 2020. Berlin: Springer, 2020: 39-45. [13] VARCHAGALL M, NETHRAVATHI N P, CHANDRAMMA R, et al. Using deep learning techniques to evaluate lung cancer using CT images [J]. SN Computer Science, 2023, 4(2): 173. [14] KIENZLE D, LORENZ J, SCHÖN R, et al. COVID detection and severity prediction with 3D-ConvNeXt and custom pretrainings[C]//Computer Vision–ECCV. Tel Aviv: Springer, 2022: 500-516. [15] WU Y, DU R, FENG J, et al. Deep CNN for COPD identification by multi-view snapshot integration of 3D airway tree and lung field [J]. Biomedical Signal Processing and Control, 2023, 79: 104162. [16] KOLLIAS D, ARSENOS A, SOUKISSIAN L, et al. MIA-COV19D: COVID-19 detection through 3-D chest CT image analysis[C]// International Conference on Computer Vision. Montreal: IEEE/CVF, 2021: 537-544. [17] HUMPHRIES S M, NOTARY A M, CENTENO J P, et al. Deep learning enables automatic classification of emphysema pattern at CT [J]. Radiology, 2020, 294(2): 434-444. [18] LIN H, ZHANG S, LI Q, et al. A new method for heart rate prediction based on LSTM-BiLSTM-Att [J]. Measurement, 2023, 207: 112384. [19] FRIEDMAN P J. Imaging studies in emphysema [J]. Proceedings of the American Thoracic Society, 2008, 5(4): 494-500. [20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. arXiv: 2010.11929 (2021-01-03) [2023-03-15]. https://doi.org/10.48550/arXiv.2010.11929. [21] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE/CVF , 2022: 11976-11986. [22] LI J, XIA X, LI W, et al. Next-ViT: next generation vision transformer for efficient deployment in realistic industrial scenarios [EB/OL]. arXiv: 2207.05501 (2022-08-16) [2023-03-15]. https://doi.org/10.48550/arXiv.2207.05501. [23] WANG W, XIE E, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]// International Conference on Computer Vision. Montreal: IEEE/CVF, 2021: 568-578. |
[1] | Wu Ju-hua, Li Jun-feng, Tao Lei. Prediction of Adverse Drug Reactions Based on Knowledge Graph Embedding and Deep Learning [J]. Journal of Guangdong University of Technology, 2024, 41(01): 19-26,40. |
[2] | Wen Wen, Liu Ying, Cai Rui-chu, Hao Zhi-feng. Spatial-temporal Deep Regression Model for Multi-granularity Traffic Flow Prediction [J]. Journal of Guangdong University of Technology, 2023, 40(04): 1-8. |
[3] | Zhong Geng-jun, Li Dong. A Channel-splited Based Dual-branch Block for 3D Point Cloud Processing [J]. Journal of Guangdong University of Technology, 2023, 40(04): 18-23. |
[4] | Jin Yu-kai, Li Zhi-sheng, Ou Yao-chun, Zhang Hua-gang, Zeng Jiang-yi, Chen Bo-chao. Prediction and Comparative Study of PM2.5 Concentration Based on Multi-stage Clustering [J]. Journal of Guangdong University of Technology, 2023, 40(03): 17-24. |
[5] | Liu Dong-ning, Wang Zi-qi, Zeng Yan-jiao, Wen Fu-yan, Wang Yang. Prediction Method of Gene Methylation Sites Based on LSTM with Compound Coding Characteristics [J]. Journal of Guangdong University of Technology, 2023, 40(01): 1-9. |
[6] | Xu Wei-feng, Cai Shu-ting, Xiong Xiao-ming. Visual Inertial Odometry Based on Deep Features [J]. Journal of Guangdong University of Technology, 2023, 40(01): 56-60,76. |
[7] | Liu Hong-wei, Lin Wei-zhen, Wen Zhan-ming, Chen Yan-jun, Yi Min-qi. A MABM-based Model for Identifying Consumers' Sentiment Polarity―Taking Movie Reviews as an Example [J]. Journal of Guangdong University of Technology, 2022, 39(06): 1-9. |
[8] | Zhang Yun, Wang Xiao-dong. A Review and Thinking of Deep Learning with a Restricted Number of Samples [J]. Journal of Guangdong University of Technology, 2022, 39(05): 1-8. |
[9] | Zheng Jia-bi, Yang Zhen-guo, Liu Wen-yin. Marketing-Effect Estimation Based on Fine-grained Confounder Balancing [J]. Journal of Guangdong University of Technology, 2022, 39(02): 55-61. |
[10] | Gary Yen, Li Bo, Xie Sheng-li. An Evolutionary Optimization of LSTM for Model Recovery of Geophysical Fluid Dynamics [J]. Journal of Guangdong University of Technology, 2021, 38(06): 1-8. |
[11] | Lai Jun, Liu Zhen-yu, Liu Sheng-hai. A Small Sample Data Prediction Method Based on Global Data Shuffling [J]. Journal of Guangdong University of Technology, 2021, 38(03): 17-21. |
[12] | Cen Shi-jie, He Yuan-lie, Chen Xiao-cong. A Monocular Depth Estimation Combined with Attention and Unsupervised Deep Learning [J]. Journal of Guangdong University of Technology, 2020, 37(04): 35-41. |
[13] | Zeng Bi, Ren Wan-ling, Chen Yun-hua. An Unpaired Face Illumination Normalization Method Based on CycleGAN [J]. Journal of Guangdong University of Technology, 2018, 35(05): 11-19. |
[14] | Yang Meng-jun, Su Cheng-yue, Chen Jing, Zhang Jie-xin. Loop Closure Detection for Visual SLAM Using Convolutional Neural Networks [J]. Journal of Guangdong University of Technology, 2018, 35(05): 31-37. |
[15] | Chen Xu, Zhang Jun, Chen Wen-wei, Li Shuo-hao. Convolutional Neural Network Algorithm and Case [J]. Journal of Guangdong University of Technology, 2017, 34(06): 20-26. |
|