Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 93-100.doi: 10.12052/gdutxb.220152

• Comprehensive Studies • Previous Articles     Next Articles

Optimized Design and Resource Allocation for Dual-server Mobile Edge Computing Systems

Li Yu-long, Liang Jing-xuan, Wang Feng   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-10-09 Online:2024-01-25 Published:2024-02-01

Abstract: In order to make full use of the computing resources of Mobile Edge Computing (MEC) system, this paper designs an optimization scheme of collaboration between two MEC servers and joint computing and communication resources. The scheme proposes the optimization problem of dual-server collaborative multi-user task calculation, where the weighted sum between system computing delay and user energy consumption is minized. The multi-user computing unloaded transmitting power and task segmentation are optimized in the proposed scheme. A joint design scheme with low computational complexity is proposed. The original problem is decoupled into two sub-problems of computational offload optimization and computational task segmentation design, both of which can be solved by interior point method and simplex method respectively. The simulation results show that the system performance of the proposed scheme is better than the existing heuristic benchmark algorithm scheme. And the joint optimization algorithm scheme can get the similar system performance as compared with the basic scheme of the optimal Lagrange multiplier method with less computation time.

Key words: mobile edge computing, computation offloading, dual-server collaboration, resource optimization

CLC Number: 

  • TN929.5
[1] MACH P, BECVAR Z. Mobile edge computing: a survey on architecture and computation offloading [J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656.
[2] MAO Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[3] 赵竑宇. 资源受限的移动边缘计算系统中计算卸载问题研究[D]. 北京: 北京邮电大学, 2019.
[4] WANG F, XU J, DING Z. Multi-antenna noma forcomputation offloading in multiuser mobile edge-computing systems [J]. IEEE Transactions on Communications, 2019, 67(3): 2450-2463.
[5] HUYNH L N T, PHARN Q V, PHAM O V, et al. Efficient computation offloading in multi-tier multi-access edge computing systems: a particle swarm optimization approach [J]. Applied Sciences, 2020, 10(1): 203.
[6] 景泽伟, 杨清海, 秦猛. 移动边缘计算中的时延和能耗均衡优化算法[J]. 北京邮电大学学报, 2020, 43(2) : 110-115.
JING Z W, YANG Q H, QIN M. A delay and energy tradeoff optimization algorithm for task offloading in mmobile edge computing network [J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2) : 110-115.
[7] GONG Y. Optimal edge server and service placement in mobile edge computing [C]// 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference. Chongqing: IEEE, 2020: 688-691.
[8] GUO H, LIU J. Collaborative computation offloading for multiaccess edge computing over fiberwireless networks [J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4514-4526.
[9] 龙隆, 刘子辰, 石晶林, 等. 移动边缘计算中计算卸载与资源分配的联合优化策略[J]. 高技术通讯, 2020, 30(8): 765-773.
LONG L, LIU Z C, SHI J L, et al. Joint optimization strategy of service cache and resource allocateon in mobile edge network [J]. High Technology Tetters, 2020, 30(8): 765-773.
[10] KUANG Z, LI L, GAO J, et al. Partial offloading scheduling and power allocation for mobile edge computing systems [J]. IEEE Internet of Things Journal, 2019, 6(4): 6774-67-85.
[11] TANG L, HU H. Computation offloading and resource allocation for the internet of things in energy constrained mecenabled hetnets [J]. IEEE Access, 2020, 8: 47509-47521.
[12] ZHANG J, XIA W W , ZHANG Y Y, et al. Joint offloading and resource allocation optimization for mobile edge computing[C]// IEEE Global Communications Conference. Singapore: IEEE, 2017: 1-6.
[13] FENG H, GUO S, YANG L, et al. Collaborative data caching and computation offloading for multi-service mobile edge computing [J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9408-9422.
[14] ZHANG J, HU X P, NING Z L, et al. Energy latency tradeoff for energy-aware offloading in mobile edge computing networks [J]. IEEE Internet of Things Journal, 2018, 5(4): 2633-2645.
[15] PENG J, QIU H, CAI J, et al. D2D-assisted multi-user cooperative partial offloading transmission scheduling and computation allocateng for MEC [J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4858-4873.
[16] NING Z, DONG P, KONG X, et al. A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things [J]. IEEE Internet of Things Journal, 2019, 6(3): 4804-4814.
[17] BI J, YUAN H, ZHANG K, et al. Energy-minimized partial computation offloading for delay sensitive applications in heterogeneous edge networks [J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(4): 1941-1954.
[18] FANG F, XU Y, DING Z, et al. Optimal resource allocation for delay minimization in NOMA-MEC networks [J]. IEEE Transactions on Communications, 2020, 68(12): 7867-7881.
[19] XUE J, AN Y. Joint task offloading and resource allocation for multi-task multi-server NOMA-MEC networks [J]. IEEE Access, 2021, 9: 16152-16163.
[20] XU J, ZHU P, LI J, et al. Secure computation offloading for multi-user multi-server MEC-enabled IoT[C]// IEEE International Conference on Communications. Montreal: IEEE, 2021: 1-6.
[21] SHANG C, SUN Y, LUO H. A hybrid deep reinforcement learning approach for dynamic task offloading in NOMA-MEC system [C]//IEEE International Conference on Sensing, Communication, and Networking (SECON) . Stockholm: IEEE, 2022: 434-442.
[22] 代美玲, 刘周斌, 郭少勇, 等。基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制[J]. 电子与信息学报, 2019, 41(11) : 2684-2690.
DAI M L, LIU Z B, GUO S Y, et al. A computation offloading and resource allocation mechanism based on minimizing devices energy consumption and system delay [J]. Journal of Electronics & Information Technology , 2019, 41(11) : 2684-2690.
[23] FAN W H, HAN J T, YAO L, et al. Latency-energy optimization for joint wifi and cellular offloading in mobile edge computing networks [J]. Comput Networks, 2020, 181: 107570.
[24] CAO X W, WANG F, XU J, et al. Joint computation and communication cooperation for energy-efficient mobile edge computing [J]. IEEE Internet of Things Journal, 2019, 6(3): 4188-4200.
[25] LUO Z Q, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems [J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34.
[26] 王丰, 李宇龙, 林志飞, 等。基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(4) : 17-23.
WANG F, LI Y L, LIN Z F, et al. Online resource allocation design for computation capacity maximization in energy harvesting mobile edge computing systems [J]. Journal of Guangdong University of Technology, 2022, 39(4) : 17-23.
[27] 李顺, 葛海波, 刘林欢, 等. 移动边缘计算中的协同计算卸载策略[J]. 计算机工程与应用, 2022, 58(21) : 83-90.
LI S, GE H B, LIU L H, et al. Collaborative computing offloading sstrategy in mobile edge computing [J]. Computer Engineering and Applications, 2022, 58(21) : 83-90.
[1] Liang Jing-xuan, Wang Feng. Optimized Design for Multiuser Cache-enabled Mobile Edge Computing [J]. Journal of Guangdong University of Technology, 2023, 40(05): 73-80.
[2] Zhu Qing-hua, Lu An-bang, Zhou Jian-tie, Hou Yan. An Improved Multi-population Evolutionary Algorithm for Task Scheduling in a Mobile Edge Computing Environment [J]. Journal of Guangdong University of Technology, 2022, 39(04): 9-16.
[3] Wang Feng, Li Yu-long, Lin Zhi-fei, Cui Miao, Zhang Guang-chi. An Online Resource Allocation Design for Computation Capacity Maximization in Energy Harvesting Mobile Edge Computing Systems [J]. Journal of Guangdong University of Technology, 2022, 39(04): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!