[1] LACHAISE M, FRITZ T. Update of the interferometric processing algorithms for the Tan-DEM-X high resolution DEMs [C].// Proceedings of 11th European Conference on Synthetic Aperture Radar, Berlin: VDE, 2016: 1-4.
[2] KIM D, HENSLEY S, YUN S, et al. Detection of durable and permanent changes in urban areas using multitemporal polarimetric UAVSAR data [J]. IEEE Geoscience and Remote Sensing Letters, 2016; 13(2): 267-271.
[3] KOBAYASHI T, UMEHARA T, UEMOTO J, et al. Damage detection after earthquake by an X-band high resolution airborne SAR [C]// Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba: IEEE, 2013: 446-447.
[4] SOLARO G, DE NOVELLIS V, CASTALDO R, et al. Coseismic fault model of Mw 8.32015 illapel earthquake (Chile) retrieved from multi-orbit sentinel1-A DInSAR measurements [J]. Remote Sensing, 2016; 8(4): 323.
[5] 杨劲松, 王隽, 任林. 高分三号卫星对海洋内波的首次定量遥感[J]. 海洋学报, 2017; 39(1): 148.YANG J S, WANG J, REN L. The first quantitative remote sensing to the oceanic internal waves using GF-3 satellite [J]. HaiYang Xuebao, 2017; 39(1): 148.
[6] LEE J S, AINSWORTH T L, WANG Y T, et al. Polarimetric SAR speckle filtering and the extended sigma filter [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015; 53(3): 1150-1160.
[7] 孙盛, 刘仁峰, 温雯, 等. 张量扩散滤波在极化SAR图像降噪中的应用[J]. 科学技术与工程, 2015; 15(18): 190-194.SUN S, LIU R F, WEN W, et al. Application of tensor-diffusion based filter in despeckle of polarimetric synthetic aperture radar imagery [J]. Science Technology and Engineering, 2015; 15(18): 190-194.
[8] D’HONDT O, GUILLASO S, HELLWICH O. Iterative bilateral filtering of polarimetric SAR data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013; 6(3): 1628-1639.
[9] 王华, 罗丽芳. 利用InSAR相干性提取青藏高原湖泊边界[J]. 广东工业大学学报2014; 31(1): 118-120.WANG H, LUO L F. Identifying lake boundaries in Tibet using InSAR coherence [J]. Journal of Guangdong University of Technology, 2014; 31(1): 118-120.
[10] LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications [M]. Boca Raton: CRC Press, 2009: 159-162.
[11] IDOL T, HAACK B, MAHABIR R. Radar speckle reduction and derived texture measures for land cover/use classification: a case study [J]. Geocarto International, 2017; 32(1): 18-20.
[12] HOSSEINIA R, ENTEZARIA I, HOMAYOUNIA S, et al. Classification of polarimetric SAR images using support vector machines [J]. Canadian Journal of Remote Sensing, 2011, 37(2): 220-233.
[13] PANIGRAHI R K, MISHRA A K. Entropy based landcover classification using polarimetric SAR images and GMM method [C]// Proceedings of IEEE Applied Electromagnetic Conference, Kolkata: IEEE, 2011:1-4.
[14] LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised terrain classification preserving scattering characteristics [J]. IEEE Transactions on Geoscience and Remote Sensing, IEEE, 2004, 42(4): 722-731.
[15] SINGHA G, YAMAGUCHIA Y, PARKA S E, et al. Evaluation of modified four-component scattering power decomposition method over highly rugged glaciated terrain [J]. Geocarto International, 2012, 27(2): 139-151.
[16] ZHANG T, HAN P, WANG X L, et al. Automatic target detection in search and rescue based on Yamaguchi polarimetric decomposition [C]// In Proceedings of IEEE CIE International Conference on Radar, Chengdu: IEEE, 2011, 490-493.
[17] YAMAGUCHIA Y, YAMAMOTO Y, YAMADA H, et al. Classification of terrain by implementing the correlation coefficient in the circular polarization basis using X-Band POLSAR data [J]. IEICE Transactions on Communications, 2008, E91-B(1): 297-301. |