Journal of Guangdong University of Technology ›› 2012, Vol. 29 ›› Issue (3): 1-11.doi: 10.3969/j.issn.1007-7162.2012.03.001

• Feature Articles •     Next Articles

Discotic Colloids: An Emerging Frontier in Soft Matter

Cheng Zheng-dong1,2,3,  Ye Jian 1,2,  He Peng3,4,  Zhang Hai-yan1, Chen Ying1, He Liqun5   

  1. 1.School of Materials and Energy, 2.Soft Materials Research Center, Guangdong University of Technology, Guangzhou  510006, China;〖JP〗
    3.Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 778433122, USA;
    4.EES14, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
    5.Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei  230026, China
  • Received:2012-06-22 Revised:2012-07-08 Online:2012-09-20 Published:2012-09-20
  • Supported by:

    US NSF DMR 1006870

Abstract: It reviews discotic colloids sized from nanometers to micrometers with attention devoted to the synthetic colloidal disks, their assembly, and their roles in soft condensed matter and material science. Various strategies have been utilized to synthesize discotic colloids, including nanocrystal growth via selective surfactant adsorption, controlled precipitation, exfoliation of layered structure compounds, shape changing of liquidcrystal emulsions. These disks have been employed to study liquid crystalline phase formation and suspension rheology. Diskpolymer nanocomposites, such as Nylonclayhybrid (NCH) and αZrPepoxy, have wide applications in advanced functional material engineering. A special attention is drawn on the human red blood cells (RBC) for the research of its flow and deformation towards medical benefits.

Key words: discotic colloids, soft materials, liquid crystal, red blood cells

[1] Perrin J. Brownian movement and molecular reality[J]. Annales De Chimie Et De Physique,1909,18:5 114.

[2] Anderson V J, Lekkerkerker H N W. Insights into phase transition kinetics from colloid science [J]. Nature, 2002, 416(6883):811815.

[3] Cheng Z D, Russell W B, Chaikin P M. Controlled growth of hardsphere colloidal crystals [J]. Nature, 1999,401:893895.

[4] Cheng Z D, Chaikin P M, Zhu J X, et al. Crystallization kinetics of hard spheres in microgravity in the coexistence regime: Interactions between growing crystallites[J]. Physical Review Letters, 2002, 88:015501.

[5] Cheng Z D, Zhu J X, Chaikin P M, et al. Nature of the divergence in low shear viscosity of colloidal hardsphere dispersions[J]. Physical Review E, 2002, 65(4):041405. 

[6] Pusey P N, Van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J].Nature,1986, 320(6060):340342.

[7] Pusey P N, van Megen W, Bartlett P, et al. Structure of crystals of hard colloidal spheres[J]. Physical review letters, 1989, 63(25):27532756.

[8] De Gennes P G, Prost J. The physics of liquid crystals[J]. Reviews of Modern Physcis, 1974, 46(4):597.

[9] Usuki A, Hasegawa N, Kato M, et al. Polymerclay nanocomposites[J]. Inorganic Polymeric Nanocomposites and Membranes, 2005:124.〖ZK)〗

[10] 〖ZK(#〗Onsager L. The effects of shape on the interaction of colloidal particles[J]. Annals of the New York Academy of Sciences, 1949, 51(4):627659.

[11] Puntes V F, Zanchet D, Erdonmez C K, et al. Synthesis of hcpCo nanodisks[J]. Journal of the American Chemical Society, 2002, 124(43):1287412880.

[12] Kim, Y H, Yoon D K, Jung H T. Recent advances in the fabrication of nanotemplates from supramolecular selforganization[J]. J Mater Chem, 2009, 19(48):90919102.

[13] Lee G, Cho Y S, Park S, et al. Synthesis and assembly of anisotropic nanoparticles[J]. Korean Journal of Chemical Engineering, 2011:110.

[14] Saunders A E, Ghezelbash A, Smilgies D M, et al. Columnar selfassembly of colloidal nanodisks[J]. Nano letters, 2006, 6(12):29592963. 

[15] Sigman Jr M B, Ghezelbash A, Hanrath T, et al. Solventless synthesis of monodisperse Cu2S nanorods, nanodisks and nanoplatelets[J]. Journal of the American Chemical Society,2003,125(51):1605016057.

[16] Van Der Kooij F M, Kassapidou K, Lekkerkerker H N W. Liquid crystal phase transitions in suspensions of polydisperse platelike particles[J]. Nature,2000, 406:868871.
[17] Badaire S, CottinBizonne C, Joseph W, et al. Shape selectivity in the assembly of lithographically designed colloidal particles[J]. Journal of the American Chemical Society,2007, 129(1):4041.

[18] Mason, T G. Osmotically driven shapedependent colloidal separations[J]. Physical Review E, 2002, 66(6):060402060402.

[19] van der Kooij F M, Lekkerkerker H N W. Formation of nematic liquid crystals in suspensions of hard colloidal platelets[J]. The Journal of Physical Chemistry B, 1998, 102(40):78297832.

[20] Brown A B D, Clarke S M, Rennie A R. Ordered phase of platelike particles in concentrated dispersions[J]. Langmuir, 1998, 14(11):31293132.

[21] Mejia A F, He P, Luo D W, et al. Uniform discotic wax particles via electrospray emulsification[J]. Journal of Colloid and Interface Science, 2009, 334(1):2228.

[22] Mejia A F, He P, Cheng Z D, et al. Surfacecontrolled shape design of discotic microparticles[J]. Soft Matter, 2010, 6(19):48854894.

[23] Park M, Harrison C, Chaikin P M, et al. Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter[J]. Science, 1997, 276(5317):14011404.

[24] Hernandez C J, Zhao K, Mason T G. PillarDeposition Particle Templating: A HighThroughput Synthetic Route for Producing LithoParticles[J]. Soft Materials, 2007, 5(1):111.

[25] Hernandez C J, Mason T G. Colloidal alphabet soup: monodisperse dispersions of shapedesigned lithoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(12):44774480.

[26] Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour[J]. Journal of Inorganic and Nuclear Chemistry, 1964, 26(1):117129.

[27] Sun L, Boo W, Sun D, et al. Preparation of exfoliated {Epoxy/αZirconium} phosphate nanocomposites containing high aspect ratio nanoplatelets[J]. Chemistry of Materials,2007,19(7):17491754.

[28] Hernandez Y, Nicolosi V, Lotya M, et al. Highyield production of graphene by liquidphase exfoliation of graphite[J]. Naturenanotechnology, 2008, 3:563568.

[29] Gabriel J C P, Sanchez C, Davidson P. Observation of nematic liquidcrystal textures in aqueous gels of smectite clays[J]. The Journal of Physical Chemestry,1996,100(26):1113911143.

[30] Sasaki T, Watanabe M, Hashizume H, et al. Macromoleculelike aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it[J]. J Am Chem Soc,1996, 118(35):83298335. 

[31] Wen P, Itoh H, Tang W, et al. Single nanocrystals of anatasetype TiO2 prepared from layered titanate nanosheets: Formation mechanism and characterization of surface properties[J]. Langmuir,2007, 23:1178211790.

[32] AdachiPagano M, Forano C, Besse J P. Delamination of layered double hydroxides by use of surfactants[J]. Chem Commun,2000, (1):9192.

[33] Treacy M M J, Rice S B, Jacobson A J, et al. Electron microscopy study of delamination in dispersions of the perovskiterelated layered phases K [Ca2Nan3NbnO3n1]: evidence for singlelayer formation [J]. Chem Mat,1990, 2(3):279286. 

[34] Saupe G B, Waraksa C C, Kim H N, et al. Nanoscale tubules formed by exfoliation of potassium hexaniobate[J]. Chem Mat,2000, 12(6):15561562.

[35] Abe R, Hara M, Kondo J N, et al. Preparation of ionexchangeable thin films of layered niobate K4Nb6O17[J]. Chem Mat, 1998, 10(6):16471651. 

[36] Abe R, Shinohara K, Tanaka A, et al. Preparation of porous niobium oxides by softchemical process and their photocatalytic activity[J]. Chem Mat,1997, 9(10):21792184. 

[37] Schaak R E, Mallouk T E. Prying apart RuddlesdenPopper phases: Exfoliation into sheets and nanotubes for assembly of perovskite thin films[J]. Chem  Mat, 2000, 12(11):34273434.

[38] Miyamoto N, Yamamoto H,  Kaito R, et al. Formation of extraordinarily large nanosheets from K4Nb6O17 crystals[J]. Chem Commun, 2002, 20:23782379.

[39] Osterloh F E. Solution selfassembly of magnetic light modulators from exfoliated perovskite and magnetite nanoparticles[J]. J Am Chem Soc,2002, 124(22):62486249.

[40] Keller S W, Kim H N, Mallouk T E. Layerbylayer assembly of Intercalation compounds and heterostructures on surfaces toward molecular beaker epitaxy[J]. J Am Chem Soc,1994, 116(19):88178818. 

 [41] Kaschak D M, Lean J T, Waraksa C C, et al. Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: Toward an inorganic “leaf”[J]. J Am Chem Soc, 1999,121(14):34353445.

[42] Coleman J N, Lotya M, O’Neill A, et al. Twodimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568571.

[43] Feynman R P. There’s plenty of room at the bottomAn invitation to enter a new field of physics[J]. Engineering and Science,1960,23(5): 2236.

[44] Zocher H. Spontaneous structure formation in sols; a new kind of anisotropic liquid media[J]. Anorg  Allg Chem,1925, 147:91110.

[45] Klug A. The tobacco mosaic virus particle: structure and assembly[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,1999, 354(1383):531535.

[46] Veerman J A C,Frenkel D. Phase behavior of disklike hardcore mesogens[J]. Physical Review A,1992, 45(8):56325632.

[47] Qazi S, Karlsson G, Rennie A. Selfassembled structures of disclike colloidal particles[J]. Trends in Colloid and Interface Science, XXIV,2011:6165.

[48] Qazi S J S, Karlsson G, Rennie A R. Dispersions of platelike colloidal particles—Cubatic order[J]. Journal of colloid and interface science,2010,348(1):8084.

[49] Tang A, Qu S, Li K, et al. Onepot synthesis and selfassembly of colloidal copper (I) sulfide nanocrystals[J]. Nanotechnology, 2010,21:285602285602.

[50] Zhao K, Mason T G. Directing colloidal selfassembly through roughnesscontrolled depletion attractions[J]. Physical review letters, 2007,99(26):268301268301.

[51] Ji H, Liu X, Wang X, et al. Selfassembly of disklike multiring ZnOSnO2 colloidal nanoparticles[J]. Journal of colloid and interface science,2011,356(2):412415.

[52] Mejia A F, Chang Y W, Cheng Z D, et al. Aspect ratio and polydispersity dependence of isotropicnematic transition in discotic suspensions[J]. Physical Review E, 2012,85(6):061708.

[53] Behabtu N, Lomeda J R, Green M J, et al. Spontaneous highconcentration dispersions and liquid crystals of graphene[J]. Nat Nanotechnol,2010,5(6):406411.

[54] Kim J E, Han T H, Lee S H, et al. Graphene oxide liquid crystals[J]. Angew ChemInt Edit,2011, 50(13):30433047. 

[55] Dan B, Behabtu N, Martinez A, et al. Liquid crystals of aqueous, giant graphene oxide flakes[J]. Soft Matter,2011, 7(23):1115411159.

[56] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011,2:571.

[57] Sun D, Sue H J, Cheng Z D, et al. Stable smectic phase in suspensions of polydisperse colloidal platelets with identical thickness[J]. Phys Rev E,2009, 80(4):041704.

[58] Ruzicka B, Zaccarelli E, Zulian L, et al. Observation of empty liquids and equilibrium gels in a colloidal clay[J]. Nature Materials,2011,10(1):5660.

[59] Langmuir I. The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates[J]. J Chem Phys,1938, 6(12): 873. 

[60] Chandrasekhar S, Sadashiva B K, Suresh K A. Liquid crystal of disclike molecules[J]. Pramana, 1977, 9(5):471480.

[61] Harrison C, Cheng, Z D, Sethuraman S. et al. Dynamics of pattern coarsening in a twodimensional smectic system[J]. Physical Review E, 2002,66(1):011706.

[62] Alexandre M, Dubois P. Polymerlayered silicate nanocomposites: preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering: R: Reports,2000, 28(1/2):163. 

[63] Chen B. clay nanocomposites: an overview with emphasis on interaction mechanisms[J]. British ceramic transactions,2004,103(6):241249.

[64] Pinnavaia T J, Lan T, Wang Z, et al. In Clayreinforced epoxy nanocomposites: synthesis, properties, and mechanism of formation[J].  ACS Publications, 1996:250261.

[65] Mirua N, Yamazoe N P, Colomban P. Proton Conductors[M]. Cambridge University Press, Cambridge, 1992, 527.

[66] Yang C, Srinivasan S, Arico A S, et al. Composite nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature[J]. Electrochemical and Solid State Letters,2001,4:A31A34.

[67] Cooper J A, Woodhouse K E, Chippindale A M, et al. Photoelectrochemical determination of ascorbic acid using methylene blue immobilized in αZirconium Phosphate[J].Electroanal,1999, 11:12591265.

[68] Curini M, Epifano F, Marcotullio M C, et al. Preparation and deprotection of 1, 1diacetates(acylals) using zirconium sulfophenyl phosphonate as catalyst[J]. Synthetic Commun, 2002,32:355362.

[69] Dutta P. Towards energy storage[J]. Nature, 1992, 358: 621621.

[70] Brenner H. The Oseen resistance of a particle of arbitrary shape[J]. J Fluid Mech, 1961, 11:604610.

[71] Brenner H. Coupling between the translational and rotational Brownian motions of rigid particles of arbitrary shape: II. General theory[J]. Journal of colloid and interface science, 1967, 23(3):407436. 

[72] Cox R G. The steady motion of a particle of arbitrary shape at small Reynolds numbers[J]. J Fluid Mech,1965,23(4):625643.

[73] He P, Mejia A F, Cheng Z D, et al. Hindrance function for sedimentation and creaming of colloidal disks[J]. Physical Review E,2010,81(2):26310.

[74] Happel J, Brenner H. Low Reynolds number hydrodynamics: with special applications to particulate media[M]. Springer,1983, 1.

[75] Khair A S, Brady J F. Microrheology of colloidal dispersions: shape matters[J]. Journal of rheology, 2008, 52(1):165196.

[76] Van der Kooij F M, Philipse A P, Dhont J K G. Sedimentation and diffusion in suspensions of sterically stabilized colloidal platelets[J]. Langmuir, 2000,16(12):53175323.

[77] Van der Kooij F M, Boek E S, Philipse A P. Rheology of dilute suspensions of hard platelike colloids[J]. Journal of colloid and interface science,2001,235(2):344349.

[78] Mongondry P, Tassin J F, Nicolai T. Revised state diagram of Laponite dispersions[J]. Journal of colloid and interface science, 2005,283(2):397405.

[79] Merrill E W. Rheology of blood[J]. Physiol Rev, 1969,49(4):86388.

[80] Chien S. Red cell deformability and its relevance to blood flow[J]. Annual review of physiology, 1987,49(1):177192.

[81] Dao M, Lim C T, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers[J]. Journal of the Mechanics and Physics of Solids, 2003,51(1112):22592280.

[82] Drochon A. Rheology of dilute suspensions of red blood cells: experimental and theoretical approaches[J]. EPJ APPLIED PHYSICS, 2003,22(2):155162. 

[83] Eriksson E, Scrimgeour J, Graneli A, et al. Optical manipulation and microfluidics for studies of single cell dynamics[J]. Journal of Optics A: Pure and Applied Optics, 2007,9:S113S113. 

[84] Wu J D, Li Y M, Lu D, et al. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers[J]. CryoLetter, 2009, 30(2):8995.

[85] PuigdeMoralesMarinkovic M, Turner K T, Butler J P, et al. Viscoelasticity of the human red blood cell[J]. American Journal of PhysiologyCell Physiology, 2007,293(2):C597C605C597C605.

[86] Sleep J, Wilson D, Simmons R, et al. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study[J]. Biophysical Journal, 1999, 77(6):30853095.

[87] Svoboda K, Schmidt C F, Branton D, et al. Conformation and elasticity of the isolated red blood cell membrane skeleton[J]. Biophysical journal, 1992, 63(3):784793.

[88] Abkarian M, Viallat A. Vesicles and red blood cells in shear flow[J]. Soft Matter, 2008, 4(4): 653657. 

[89] Higgins J M, Eddington D T, Bhatia S N, et al. Sickle cell vasoocclusion and rescue in a microfluidic device[J]. Proceedings of the National Academy of Sciences, 2007, 104(51):2049620496. 

[90] Jggi R D, Sandoz R, Effenhauser C S. Microfluidic depletion of red blood cells from whole blood in highaspectratio microchannels[J]. Microfluidics and Nanofluidics, 2007, 3(1):4753.

[91]  Lincoln B, Erickson H M, Schinkinger S, et al. Deformabilitybased flow cytometry[J]. Cytometry Part A, 2004, 59(2):203209. 

[92] Minerick A R, Ostafin A E, Chang H C. Electrokinetic transport of red blood cells in microcapillaries[J]. Electrophoresis, 2002, 23(14):21652173. 

[93] Munn L L, Dupin M M. Blood cell interactions and segregation in flow[J]. Annals of biomedical engineering, 2008, 36(4): 534544.

[94] Caputo K E, Lee D, King M R, et al. Adhesive dynamics simulations of the shear threshold effect for leukocytes[J]. Biophysical journal, 2007, 92(3):787797. 

[95] Chang K C, Tees D F J, Hammer D A. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion[J]. Proceedings of the National Academy of Sciences, 2000, 97(21):1126211262.

[96] Noguchi H, Gompper G. Fluid vesicles with viscous membranes in shear flow[J]. Physical review letters, 2004, 93(25):258102258102. 

[97] Pozrikidis C. Numerical simulation of the flowinduced deformation of red blood cells[J]. Annals of Biomedical Engineering, 2003, 31(10):11941205.

[98] Stephanie E A G, Patricia A R, Joseph M D, et al. The effect of particle design on cellular internalization pathways [J]. USA:Natl Acad Sci,2008, 105:11613.

[99] Timothy J M, Stephen W J, Joseph M D, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles[J]. PNAS 2011,108(2): 586591.〖ZK)〗

[100] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorodpolymer solar cells[J]. Science, 2002, 295(5564):24252427.

[101] Ataca C, Akturk E, Ciraci S, et al. Highcapacity hydrogen storage by metalized graphene [J]. Appl Phys Lett, 2008, 93, 4:0431230431233.
[1] LIU Xiang-yun~1,FENG Jun-hu~2. A New Method of Temperature Measurement—— Thermochromic Liquid Crystal Method [J]. Journal of Guangdong University of Technology, 2006, 23(4): 50-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!