Journal of Guangdong University of Technology ›› 2012, Vol. 29 ›› Issue (3): 18-22.doi: 10.3969/j.issn.1007-7162.2012.03.003

• Forum on Extension • Previous Articles     Next Articles

Research on the Extension Transformation Strategy for Customer Retention

Li Xingsen1, Zhu Zhengxiang2, Liu Yanbin1   

  1. 1.  Ningbo Institute of Technology, Zhejiang University, Ningbo  315100, China;
    2. Dept. of Information Operation and Command Training, NDU of PLA, Beijing 100091, China
  • Received:2012-05-11 Online:2012-09-20 Published:2012-09-20

Abstract: Strategy generation is the key factor for scientific decisionmaking; extension strategy generation is an important method of settling conflicts in extension engineering. While analyzing the decision tree classification, it presents an acquisition method of extension strategy. It remines and transforms the decision tree rules from “can’t to can, not to yes” strategy, based on the extension set and extension transformation theory. The strategy applies simple and intuitive decisionmaking to the retention of the customer. Its application in a web company has proved that this method is highly feasible, and also has the reference value for the research on other methods based on extension.

Key words: extension transformation; transformation strategy; decision tree; rules mining; customer retention

[1] 蔡文,杨春燕,何斌.可拓逻辑初步[M].北京:科学出版社,2003.

[2] 杨春燕,蔡文. 可拓工程[M]. 北京: 科学出版社,2007.

[3] Han J,Micheline K. Data Mining: Concepts and Techniques[M]. 2ndedition.  Morgan Kaufmann, 2006. 

[4] Olson D, Shi  Y. Introduction to business data mining[M]. USA:McGrawHill(International edition),2007.

[5] Yang Chunyan, Li Xingsen, Cai Wen, et al.  Formalized research on incompatibility problems in marketing[C]. Proceedings of 2007 International Conference  On Management Science & Engineering (14th),2007:1171-1177.

[6] Zhang Zhiwang, Shi Yong, Gao Guangxia. A rough setbased multiple criteria linear programming approach for the medical diagnosis and prognosis[J]. An International Journal of Expert Systems With Applications:Elsevier Science,2009,36(5):8932-8937. 

[7] Nie G L, Zhang L L, Li X S,et al. The analysis on the customers churn of charge email based on data mining[C].Sixth IEEE International Conference on Data MiningWorkshops:ICDMW06. China  Hong Kong, 2006:843-847.

〖HJ2.1mm〗[8] 〖WB〗李立希,李铧汶,杨春燕.可拓学在数据挖掘中的应用初探[J].中国工程科学,2004,6(7):5359. 

Li Lixi, Li Huawen, Yang Chunyan. Study on the application of extenics in data mining[J]. Engineering Science, 2004,6(7):53-59.

[9] 陈文伟,杨春燕,黄金才.可拓知识与可拓知识推理[J]. 哈尔滨工业大学学报,2006,38(7):1094-1096.

〖DW〗Chen Wenwei, Yang Chunyan, Huang Jincai. Research on extension knowledge and extension knowledge reasoning[J].  Journal of Harbin Institute of Technology,2006,38(7):10941096.

[10] 〖ZK(#〗〖WB〗张应利,何斌.基于物元可拓性的潜信息挖掘[J]. 数学的实践与认识,2001,31(5):569-575.

Zhang Yingli, He Bin. Potential information mining based on matterelement extensibility[J]. Mathematics in Practice and Theory,2001,31(5):569-575.

[11] 李兴森,石勇,李爱华,基于可拓集的企业数据挖掘应用方案初探[J]. 哈尔滨工业大学学报,2006,38(7):1124-1128.

   Li Xingsen,Shi Yong,Li Aihua. Application study on enterprise data mining solution based on extension set[J]. Journal of Harbin Institute of Technology,2006,38(7):1124-1128.

[12] 李兴森,石勇,鹿盟,等.低质量数据下的知识获取方案研究[J]. 当代经济管理,2007(3):78-83.

〖DW〗Li Xingsen, Shi Yong, Lu Meng,et al. Knowledge acquisition under the lowquality data[J].Contemporary Economy & Management,2007(3):78-83.

[13] 黄金才,陈文伟. 可拓数据挖掘的概念与理论[J].计算机工程与应用,2006,42(14):7-8.

Huang Jincai, Chen Wenwei, The conception and theory of extension data mining[J].Computer Engineering and Applications,2006,42(14):7-8.

[14] 蔡文,杨春燕,陈文伟,等.可拓集与可拓数据挖掘[M]. 北京:科学出版社,2008,6. 

[15] 杨春燕,李小妹,陈文伟,等.可拓数据挖掘方法及其计算机实现[M]. 广州:广东高等教育出版社,2010,8.

[16] Li Xingsen, Xiang Zhongbiao, Zhang Haolan, et al. A novel method for extension transformation knowledge discovering[C].H.Wang et al Eds. APWeb 2012 workshops, LNCS, 2012,7234:43-50.

[17] 李兴森. 智能知识及其管理模式研究[D].北京: 中国科学院研究生院博士论文,2008.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!