Journal of Guangdong University of Technology ›› 2020, Vol. 37 ›› Issue (02): 67-73.doi: 10.12052/gdutxb.190074

• Comprehensive Studies • Previous Articles     Next Articles

Target Turning Maneuver Type Recognition Based on Recurrent Neural Networks

Wu Jia-hu1, Xiong Hua2, Zong Rui2, Zhao Yao1, Zhou Xian-zhong1   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. Beijing Institute of Electronic System Engineering, Beijing 100854, China
  • Received:2019-05-25 Online:2020-03-10 Published:2020-01-13

Abstract: Recognizing the maneuver types of airborne objects, such as fighters, is an important identification basis in figuring out their military intentions. To better identify the performance of maneuver types of enemy warfare aircraft and thus enhance our military's combat capability, the airborne high-speed moving targets such as the fighter's maneuver types are mainly studied. Addressing the low identification accuracy of traditional methods, recurrent neural networks are adopted to the problem of maneuver types recognition and identification. The main contribution of this study is the application of four kinds of recurrent neural networks architectures:Bi-LSTM (Bidirectional LSTM), LSTM, RNN and GRU. The experiment results show that the proposed RNN based method can recognize the target's turning maneuver type with efficiency, and the identification accuracy of Bi-LSTM is achieved by 98.85%.

Key words: maneuvering target, maneuver type, recurrent neural networks, Bi-LSTM (Bidirectional LSTM), maneuver recognition

CLC Number: 

  • TP183
[1] 冷画屏, 吴晓锋, 王慕鸿. 空中目标战术机动类型的实时识别[J]. 火力与指挥控制, 2011, 36(1):64-66 LENG H P, WU X F, WANG M H. Real-time recognition of air target tactical maneuvering type[J]. Fire Control & Command Control, 2011, 36(1):64-66
[2] GERDES A. Automatic maneuver recognition in the automobile:the fusion of uncertain sensor values using Bayesian models[C]//Proceedings of the 3rdInternational Workshop on Intelligent Transportation. Hamburg, Deutschland:WIT, 2006, 129-133.
[3] HUENHAGEN T, DENGLER I, TAMKE A, et al. Maneuver recognition using probabilistic finite-state machines and fuzzy logic[C]//Proceedings of the IEEE Conference on Intelligent Vehicles Symp. (IV), La Jolla, CA:IEEE, 2010, 65-70.
[4] TKACHENKO P, ZHOU J, GAGLIARDI D, et al. On-line maneuver identification in highway traffic using elastic template matching[J]. IFAC-Papers on Line, 2018, 51(15):557-562
[5] 杨晓伟, 赵海军. 自动目标识别与机动目标建模及跟踪方法研究[J]. 电子科技, 2017, 30(10):127-130 YANG X W, ZHAO H J. Research on automatic target recognition and maneuvering target modeling and tracking[J]. Electronic Sci & Tech, 2017, 30(10):127-130
[6] MILAN A, REZATOFIGHI S H, DICK A, et al. Online multi-target tracking using recurrent neural networks[C]//Proceedings of the AAAI conference on Artificial Intelligence. San Francisco, California:AAAI, 2017.
[7] LI X R, JILKOV V P. Survey of maneuvering target tracking. Part I. Dynamic models[J]. IEEE Transactions on Aerospace & Electronic Systems, 2004, 39(4):1333-1364
[8] RICHARDS M A, SCHEER J A, HOLM W A. Principle of Modern Radar:Basic Principles[M]. Rleigh, NC:SciTech, Publishing, 2010.
[9] 杨丽, 吴雨茜, 王俊丽, 刘义理. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2):1-6, 26 YANG L, WU Y X, WANG J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(S2):1-6, 26
[10] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. Computer Science, 2015, 10:1-38
[11] 张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4):385-397 ZAHNG R, LI W P, MO T. Review of deep learning[J]. Information and Control, 2018, 47(4):385-397
[12] GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM:A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10):2222-2232
[13] GRAVES A, FERNANDEZ S, SCHMI-DHUBER J. Bidirectional LSTM networks for improved phoneme classification and recognition[C]//Proceedings of the International Conference on Artificial Neural Networks (ICANN). Berlin, Heidelberg:Springer, 2005:799-804.
[14] CHUNG J, GALCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014, 11:1-10
[15] 何友, 修建娟, 关欣. 雷达数据处理及应用[M]. 北京:电子工业出版社, 2013:60-70.
[16] 周宏仁, 敬忠良, 王培德. 机动目标跟踪[M]. 北京:国防工业出版, 1991:78-108.
[1] Zhang Wen-feng3,Hu Zhen-tao2,Cheng Jian-xing3 . A Multisensor Data Fusion Estimation Algorithm for Vehicle Maneuvering Target Tracking [J]. Journal of Guangdong University of Technology, 2009, 26(1): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!